scholarly journals On bubble dynamics in subcooled nucleate boiling on a platinum wire

2019 ◽  
Vol 137 ◽  
pp. 1-12 ◽  
Author(s):  
A. Ozbey ◽  
M. Karimzadehkhouei ◽  
K. Sefiane ◽  
A. Koşar ◽  
J.R.E. Christy
2005 ◽  
Author(s):  
X. D. Wang ◽  
G. Lu ◽  
X. F. Peng ◽  
B. X. Wang

A visual study was conducted to investigate the evaporation and nucleate boiling of a water droplet on heated copper, aluminum, or stainless surfaces with temperature ranging from 50°C to 112°C. Using a high-speed video imaging system, the dynamical process of the evaporation of a droplet was recoded to measure the transient variation of its diameter, height, and contact angle. When the contact temperature was lower than the saturation temperature, the evaporation was in film evaporation regime, and the evaporation could be divided into two stages. When the surface temperature was higher than the saturation temperature, the nucleate boiling was observed. The dynamical behavior of nucleation, bubble dynamics droplet were detail observed and discussed. The linear relationships of the average heat flux vs. temperature of the heated surfaces were found to hold for both the film evaporation regime and nucleate boiling regime. The different slopes indicated their heat transfer mechanism was distinct, the heat flux decreased in the nucleate boiling regime more rapidly than in the film evaporation due to the strong interaction between the bubbles.


Author(s):  
Bambang Joko Suroto ◽  
Masahiro Tashiro ◽  
Sana Hirabayashi ◽  
Sumitomo Hidaka ◽  
Masamichi Kohno ◽  
...  

The effects of hydrophobic circle spot size and subcooling on local film boiling phenomenon from the copper surface with single PTFE (Polytetrafluoroethylene) hydrophobic circle spot at low heat flux has been investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0 and 10K. The heat transfer surfaces are used polished copper block with single PTFE hydrophobic circle spot of diameters 2, 4 and 6 mm, respectively. A high-speed camera was used to capture bubble dynamics and disclosed the sequence of the process leading to local film boiling. The result shows that local films boiling occurs on the PTFE circle spot at low heat flux and was triggered by the merging of neighboring bubbles. The study also showed that transition time required for change from nucleate boiling regime to local film boiling regime depends on the diameter of the hydrophobic circle spot and the subcooling. A stable local film boiling occurs at the smallest diameter of hydrophobic spot. Subcooling cause the local film boiling occur at negative superheat and oscillation of bubble dome.


Author(s):  
Woorim Lee ◽  
Gihun Son

Bubble growth on a micro-finned surface, which can be used in enhancing boiling heat transfer, is numerically investigated by solving the conservation equations of mass, momentum, and energy. The bubble deformation or the liquid-vapor interface is determined by the sharp-interface level-set method, which is modified to include the effect of phase change and to treat the contact angle and the evaporative heat flux from the liquid microlayer on an immersed solid surface of a microfin. The numerical method is applied to clarify bubble growth and heat transfer characteristics on a surface including fin and cavity during nucleate boiling which have not been provided from the previous experimental studies. The effects of single fin, fin-cavity distance, and fin-fin spacing on the bubble dynamics are investigated. The micro-fin is found to affect the activation of cavity. The fin-cavity configuration is found to determine the bubble formation in a cavity. The vapor removal rate is also observed to significantly depend on the fin-fin spacing.


1998 ◽  
Vol 120 (2) ◽  
pp. 365-370 ◽  
Author(s):  
K. H. Haddad ◽  
F. B. Cheung

Steady-state nucleate boiling heat transfer experiments in saturated and subcooled water were conducted. The heating surface was a 0.305 m hemispherical aluminum vessel heated from the inside with water boiling on the outside. It was found that subcooling had very little effect on the nucleate boiling curve in the high heat flux regime where latent heat transport dominated. On the other hand, a relatively large effect of subcooling was observed in the low-heat-flux regime where sensible heat transport was important. Photographic records of the boiling phenomenon and the bubble dynamics indicated that in the high-heat-flux regime, boiling in the bottom center region of the vessel was cyclic in nature with a liquid heating phase, a bubble nucleation and growth phase, a bubble coalescence phase, and a large vapor mass ejection phase. At the same heat flux level, the size of the vapor masses was found to decrease from the bottom center toward the upper edge of the vessel, which was consistent with the increase observed in the critical heat flux in the flow direction along the curved heating surface.


Author(s):  
Robert Stephenson ◽  
Jiajun Xu

In this study, a combination of synchronized high-speed video (HSV) and infrared (IR) thermography was used to characterize the nucleation, growth and detachment of bubbles generated during nucleate boiling inside the nanoemulsion fluid. The Ethanol/Polyalphaolefin nanoemulsion fluid was formed by dispersing ethanol nanodroplets into base fluid Polyalphaolefin, in which these nanodroplets can serve as the pre-seed boiling nuclei. With this unique combination, it allows controlled nucleation, time-resolved temperature distribution data for the boiling surface and direct visualization of the bubble cycle to track bubble nucleation and growth. Data gathered included measurements of bubble growth versus time, as well as 2D temperature history of the heater surface underneath the bubbles. Our findings demonstrate a significant difference of bubble dynamics between the nanoemulsion fluid and pure ethanol, which may also account for the substantial increase in heat transfer coefficient and critical heat flux of nanoemulsion fluid. It is also observed here that the bubbles occurred inside the nanoemulsion fluid appear to be more uniform and two orders-of-magnitude larger in size. While the growth rate of the bubbles inside pure ethanol was found to be heat diffusion controlled at a coefficient around ½, which however, dropped to be around 0.3 for nanoemulsion fluid. Further study on this unique system will help reveal its heat transfer mechanisms.


Sign in / Sign up

Export Citation Format

Share Document