Evaporation and Nucleate Boiling of an Individual Droplet on Surfaces

2005 ◽  
Author(s):  
X. D. Wang ◽  
G. Lu ◽  
X. F. Peng ◽  
B. X. Wang

A visual study was conducted to investigate the evaporation and nucleate boiling of a water droplet on heated copper, aluminum, or stainless surfaces with temperature ranging from 50°C to 112°C. Using a high-speed video imaging system, the dynamical process of the evaporation of a droplet was recoded to measure the transient variation of its diameter, height, and contact angle. When the contact temperature was lower than the saturation temperature, the evaporation was in film evaporation regime, and the evaporation could be divided into two stages. When the surface temperature was higher than the saturation temperature, the nucleate boiling was observed. The dynamical behavior of nucleation, bubble dynamics droplet were detail observed and discussed. The linear relationships of the average heat flux vs. temperature of the heated surfaces were found to hold for both the film evaporation regime and nucleate boiling regime. The different slopes indicated their heat transfer mechanism was distinct, the heat flux decreased in the nucleate boiling regime more rapidly than in the film evaporation due to the strong interaction between the bubbles.

Author(s):  
Bambang Joko Suroto ◽  
Masahiro Tashiro ◽  
Sana Hirabayashi ◽  
Sumitomo Hidaka ◽  
Masamichi Kohno ◽  
...  

The effects of hydrophobic circle spot size and subcooling on local film boiling phenomenon from the copper surface with single PTFE (Polytetrafluoroethylene) hydrophobic circle spot at low heat flux has been investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0 and 10K. The heat transfer surfaces are used polished copper block with single PTFE hydrophobic circle spot of diameters 2, 4 and 6 mm, respectively. A high-speed camera was used to capture bubble dynamics and disclosed the sequence of the process leading to local film boiling. The result shows that local films boiling occurs on the PTFE circle spot at low heat flux and was triggered by the merging of neighboring bubbles. The study also showed that transition time required for change from nucleate boiling regime to local film boiling regime depends on the diameter of the hydrophobic circle spot and the subcooling. A stable local film boiling occurs at the smallest diameter of hydrophobic spot. Subcooling cause the local film boiling occur at negative superheat and oscillation of bubble dome.


Author(s):  
Timothy H. Lee ◽  
Dimitrios C. Kyritsis ◽  
Chia-fon F. Lee

Engine-out HC emissions resulting from liquid fuel, which escapes from the combustion process, provides the motivation to better understand the film vaporization in a combustion chamber. Previous work theorized that the removal of liquid fuel from the combustion cycle was a result of the increase in film vaporization time due to the Leidenfrost phenomenon. Currently, KIVA 3V predicts a continuous decrease in vaporization time for piston top films. The objective of this work is to improve the KIVA 3V film vaporization model through the inclusion of established boiling correlations, and thus, the Leidenfrost phenomenon. Experimental results have been reviewed from which expressions encompassing high acceleration effects for the nucleate boiling regime and the film boiling regime were investigated, implemented, and validated. Validation was conducted using published experimental data sets for boiling heat flux. As a result of the implementation, a noticeable increase in heat flux occurred due to high accelerations for films in saturated film boiling in both nucleate and film boiling. Computational simulations were conducted using a semi-infinite plate and a direct-injection spark-ignition engine. The semi-infinite plate provided a controlled environment which could separate the effects of pressure and acceleration on film boiling heat flux, film vaporization rates, and film vaporization times. The effect of decreased film vaporization rates, during the Leidenfrost phenomenon, was observed to decrease with increasing acceleration. Finally, the engine computations were used to provide the first film boiling and film vaporization rates for engine fuel films at temperatures above saturation temperature. As a result of this work, a film vaporization model capable of improved prediction of vaporization rates of piston top films in saturated boiling conditions has been created.


2019 ◽  
Vol 881 ◽  
pp. 84-103 ◽  
Author(s):  
Fabian M. Tenzer ◽  
Ilia V. Roisman ◽  
Cameron Tropea

Spray cooling of a hot target is characterized by strong heat flux and fast change of the temperature of the wall interface. The heat flux during spray cooling is determined by the instantaneous substrate temperature, which is illustrated by boiling curves. The variation of the heat flux is especially notable during different thermodynamic regimes: film, transitional and nucleate boiling. In this study transient boiling curves are obtained by measurement of the local and instantaneous heat flux produced by sprays of variable mass flux, drop diameter and impact velocity. These spray parameters are accurately characterized using a phase Doppler instrument and a patternator. The hydrodynamic phenomena of spray impact during various thermodynamic regimes are observed using a high-speed video system. A theoretical model has been developed for heat conduction in the thin expanding thermal boundary layer in the substrate. The theory is able to predict the evolution of the target temperature in time in the film boiling regime. Moreover, a remote asymptotic solution for the heat flux during the fully developed nucleate boiling regime is developed. The theoretical predictions agree very well with the experimental data for a wide range of impact parameters.


2006 ◽  
Vol 129 (2) ◽  
pp. 114-123
Author(s):  
Chen-li Sun ◽  
Van P. Carey

In this study, boiling experiments were conducted with 2-propanol/water mixtures in confined gap geometry under various levels of gravity. The temperature field created within the parallel plate gap resulted in evaporation over the portion of the vapor-liquid interface of the bubble near the heated surface, and condensation near the cold surface. Full boiling curves were obtained and two boiling regimes—nucleate boiling and pseudofilm boiling—and the transition condition, the critical heat flux (CHF), were identified. The observations indicated that the presence of the gap geometry pushed the nucleate boiling regime to a lower superheated temperature range, resulting in correspondingly lower heat flux. With further increases of wall superheat, the vapor generated by the boiling process was trapped in the gap to blanket the heated surface. This caused premature occurrence of CHF conditions and deterioration of heat transfer in the pseudo-film boiling regime. The influence of the confined space was particularly significant when greater Marangoni forces were present under reduced gravity conditions. The CHF value of x (molar fraction)=0.025, which corresponded to weaker Marangoni forces, was found to be greater than that of x=0.015 with a 6.4mm gap.


2003 ◽  
Author(s):  
Adrian M. Holland ◽  
Colin P. Garner

This paper discusses the production and use of laser-machined surfaces that provide enhanced nucleate boiling and heat transfer characteristics. The surface features of heated plates are known to have a significant effect on nucleate boiling heat transfer and bubble growth dynamics. Nucleate boiling starts from discrete bubbles that form on surface imperfections, such as cavities or scratches. The gas or vapours trapped in these imperfections serve as nuclei for the bubbles. After inception, the bubbles grow to a certain size and depart from the surface. In this work, special heated surfaces were manufactured by laser machining cavities into polished aluminium plates. This was accomplished with a Nd:YAG laser system, which allowed drilling of cavities of a known diameter. The size range of cavities was 20 to 250 micrometers. The resulting nucleate pool boiling was analysed using a novel high-speed imaging system comprising an infrared laser and high resolution CCD camera. This system was operated up to a 2 kHz frame rate and digital image processing allowed bubbles to be analysed statistically in terms of departure diameter, departure frequency, growth rate, shape and velocity. Data was obtained for heat fluxes up to 60 kW.m−2. Bubble measurements were obtained working with water at atmospheric pressure. The surface cavity diameters were selected to control the temperature at which vapour bubbles started to grow on the surface. The selected size and spacing of the cavities was also explored to provide optimal heat transfer.


1998 ◽  
Vol 120 (2) ◽  
pp. 365-370 ◽  
Author(s):  
K. H. Haddad ◽  
F. B. Cheung

Steady-state nucleate boiling heat transfer experiments in saturated and subcooled water were conducted. The heating surface was a 0.305 m hemispherical aluminum vessel heated from the inside with water boiling on the outside. It was found that subcooling had very little effect on the nucleate boiling curve in the high heat flux regime where latent heat transport dominated. On the other hand, a relatively large effect of subcooling was observed in the low-heat-flux regime where sensible heat transport was important. Photographic records of the boiling phenomenon and the bubble dynamics indicated that in the high-heat-flux regime, boiling in the bottom center region of the vessel was cyclic in nature with a liquid heating phase, a bubble nucleation and growth phase, a bubble coalescence phase, and a large vapor mass ejection phase. At the same heat flux level, the size of the vapor masses was found to decrease from the bottom center toward the upper edge of the vessel, which was consistent with the increase observed in the critical heat flux in the flow direction along the curved heating surface.


Author(s):  
Robert Stephenson ◽  
Jiajun Xu

In this study, a combination of synchronized high-speed video (HSV) and infrared (IR) thermography was used to characterize the nucleation, growth and detachment of bubbles generated during nucleate boiling inside the nanoemulsion fluid. The Ethanol/Polyalphaolefin nanoemulsion fluid was formed by dispersing ethanol nanodroplets into base fluid Polyalphaolefin, in which these nanodroplets can serve as the pre-seed boiling nuclei. With this unique combination, it allows controlled nucleation, time-resolved temperature distribution data for the boiling surface and direct visualization of the bubble cycle to track bubble nucleation and growth. Data gathered included measurements of bubble growth versus time, as well as 2D temperature history of the heater surface underneath the bubbles. Our findings demonstrate a significant difference of bubble dynamics between the nanoemulsion fluid and pure ethanol, which may also account for the substantial increase in heat transfer coefficient and critical heat flux of nanoemulsion fluid. It is also observed here that the bubbles occurred inside the nanoemulsion fluid appear to be more uniform and two orders-of-magnitude larger in size. While the growth rate of the bubbles inside pure ethanol was found to be heat diffusion controlled at a coefficient around ½, which however, dropped to be around 0.3 for nanoemulsion fluid. Further study on this unique system will help reveal its heat transfer mechanisms.


2001 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
P. M. Carrica ◽  
V. Masson

We present the results of an experimental study of the effects of externally imposed electric fields on boiling heat transfer and critical heat flux (CHF) in dielectric fluids. The study comprises the analysis of geometries that, under the effects of electric fields, cause the bubbles either to be pushed toward the heater or away from it. A local phase detection probe was used to measure the void fraction and the interfacial impact rate near the heater. It was found that the critical heat flux can be either augmented or reduced with the application of an electric field, depending on the direction of . In addition, the heat transfer can be slightly enhanced or degraded depending on the heat flux. The study of the two-phase flow in nucleate boiling, only for the case of favorable dielectrophoretic forces, reveals that the application of an electric field reduces the bubble detection time and increases the detachment frequency. It also shows that the two-phase flow characteristics of the second film boiling regime resemble more a nucleate boiling regime than a film boiling regime.


1959 ◽  
Vol 81 (3) ◽  
pp. 230-236 ◽  
Author(s):  
R. Siegel ◽  
C. Usiskin

A photographic study was made to determine the qualitative effect of zero gravity on the mechanism of boiling heat transfer. The experimental equipment included a container for boiling water and a high-speed motion-picture camera. To eliminate the influence of gravity, these were mounted on a platform which was allowed to fall freely approximately 8 ft. During the free fall, photographs were taken of boiling from various surface configurations such as electrically heated horizontal and vertical ribbons. The heat flux was varied to produce conditions from moderate nucleate boiling to burnout. The results indicate that gravity plays a considerable role in the boiling process, especially in connection with the motion of vapor within the liquid.


Sign in / Sign up

Export Citation Format

Share Document