A continuum mixture model for moving pulsed laser phase change process

2019 ◽  
Vol 140 ◽  
pp. 388-396
Author(s):  
S.P. Kar ◽  
P. Rath
2018 ◽  
Vol 70 ◽  
pp. 02010
Author(s):  
Waldemar Kuczyński ◽  
Aleksander Denis

The following paper presents the results of preliminary experimental research on the influence of instabilities of a hydrodynamic type on the condensation phase change process in tubular minichannels. The research was focused on a new pro-ecological refrigerant, R1234yf, intended as a substitute for R134a that currently is being phased out. The flow condensation phase change process was investigated for both steady and un-steady conditions in singular tubular minichannels with an internal diameter d = {1,44; 2,30; 3,30} mm. The scope of the analysis of the experimental data covered an estimation of propagation velocities for both pressure and temperature instabilities as well as the shrinkage of the condensation zone. The results were also compared with the previous results obtained for the flow condensation phase change of R134a refrigerant in tubular minichannels with the same internal diameters.


Sign in / Sign up

Export Citation Format

Share Document