Computational Modeling of Dynamic Response of a Latent Thermal Energy Storage System With Embedded Heat Pipes

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
K. Nithyanandam ◽  
R. Pitchumani

Concentrating solar power plants (CSPs) are being explored as the leading source of renewable energy for future power generation. Storing sun's energy in the form of latent thermal energy of a phase change material (PCM) is desirable for use on demand including times when solar energy is unavailable. Considering a latent thermal energy storage (LTES) system incorporating heat pipes to enhance heat transfer between the heat transfer fluid (HTF) and the PCM, this paper explores the dynamic response of the LTES system subjected to repeated cycles of charging and discharging. A transient computational analysis of a shell-and-tube LTES embedded with two horizontal heat pipes is performed for repeated charging and discharging of the PCM to analyze the dynamic performance of the LTES, and the augmentation in the cyclic performance of the LTES embedded with heat pipes is investigated. A model low temperature phase change material system is considered in the present study, with the physical results being scalable to high temperature systems used in CSP plants.

Author(s):  
Karthik Nithyanandam ◽  
Ranga Pitchumani

Concentrated solar power plants (CSP) are being explored as the leading source of renewable energy for future power generation. Storing sun’s energy in the form of latent thermal energy of a phase change material (PCM) is desirable for use on demand including times when solar energy is unavailable. Considering a latent thermal energy storage (LTES) system incorporating heat pipes to enhance heat transfer between the heat transfer fluid (HTF) and the PCM, this paper explores the dynamic response of the LTES system subjected to repeated cycles of charging and discharging. A transient computational analysis of a shell-and-tube LTES embedded with two horizontal heat pipes (HHP) is performed for repeated charging and discharging of the PCM to analyze the dynamic performance of the LTES and the augmentation in the cyclic performance of the LTES embedded with heat pipes is investigated. A model low temperature phase change material system is considered in the present study, with the physical results being scalable to high temperature systems used in CSP plants.


2019 ◽  
Vol 116 ◽  
pp. 00038 ◽  
Author(s):  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
George Dogkas ◽  
Christos Pagkalos ◽  
Kostas Lymperis ◽  
...  

A prototype Latent Heat Thermal Energy Storage (LHTES) unit has been designed, constructed, and experimentally analysed for its thermal storage performance under different operational conditions considering heating application and exploiting solar and geothermal energy. The system consists of a rectangular tank filled with Phase Change Material (PCM) and a finned tube staggered Heat Exchanger (HE) while water is used as Heat Transfer Fluid (HTF). Different HTF inlet temperatures and flow rates were tested to find out their effects on LHTES performance. Thermal quantities such as HTF outlet temperature, heat transfer rate, stored energy, were evaluated as a function of the conditions studied. Two commercial organic PCMs were tested A44 and A46. Results indicate that A44 is more efficient during the charging period, taking into account the two energy sources, solar and heat pump. During the discharging process, it exhibits higher storage capacity than A46. Concluding, the developed methodology can be applied to study different PCMs and building applications.


2012 ◽  
Vol 472-475 ◽  
pp. 1693-1697 ◽  
Author(s):  
Nasrul Amri Mohd Amin ◽  
Frank Bruno ◽  
Martin Belusko

The utilisation of phase change material (PCM) for thermal energy storage (TES) can significantly enhance the energy savings achievable with renewable thermal systems. Sphere based packed bed systems have been used as TES for many years. However, due to the thermal resistance within these systems, the heat transfer is limited and not all the PCM can be used effectively. This study focuses on heat transfer enhancement options for single PCM sphere in a TES system. An experimental investigation has been conducted using water as the PCM. The thermal performance of plain plastic sphere containing PCM has been compared to plastic sphere encapsulated with conducting pins. The heat transfer rate of the sphere with conducting pins was more than 34% that of the sphere without pins.


2020 ◽  
Vol 9 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Ramalingam Senthil ◽  
Aditya Patel ◽  
Rohan Rao ◽  
Sahil Ganeriwal

This paper investigates the melting behaviour of phase change material (PCM) in a vertical thermal energy storage system with provision of thin rectangular fins of uniform and variable lengths on the heat transfer tube surfaces. The selected PCM and heat transfer fluid (HTF) are paraffin wax and water, respectively. The HTF is passed through the helically coiled copper tube of 10 mm diameter to melt the PCM. The time required to complete the melting of PCM in the system with fins is found to be five hours, whereas for the system without fins it is five hours and forty minutes, for the same conditions of constant water temperature of about 70°C and flow rate of 0.02 kg/s. HTF tube with fins is observed to be more effective with a 13.33% faster rate of melting when compared to that of the HTF tube without fins. Such a fast charging process will be helpful in storing maximum energy within a short period/duration of time shorter duration in for solar thermal and heat recovery applications during lean production times. ©2020. CBIORE-IJRED. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document