Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams

2021 ◽  
Vol 170 ◽  
pp. 107151
Author(s):  
Xinpeng Huang ◽  
Cheng Sun ◽  
Zhenqian Chen ◽  
Yunsong Han
2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Zhen Yang ◽  
Suresh V. Garimella

Melting of phase change materials (PCMs) embedded in metal foams is investigated. The two-temperature model developed accounts for volume change in the PCM upon melting. Volume-averaged mass and momentum equations are solved, with the Brinkman–Forchheimer extension to Darcy’s law employed to model the porous-medium resistance. Local thermal equilibrium does not hold due to the large difference in thermal diffusivity between the metal foam and the PCM. Therefore, a two-temperature approach is adopted, with the heat transfer between the metal foam and the PCM being coupled by means of an interstitial Nusselt number. The enthalpy method is applied to account for phase change. The governing equations are solved using a finite-volume approach. Effects of volume shrinkage/expansion are considered for different interstitial heat transfer rates between the foam and PCM. The detailed behavior of the melting region as a function of buoyancy-driven convection and interstitial Nusselt number is analyzed. For strong interstitial heat transfer, the melting region is significantly reduced in extent and the melting process is greatly enhanced as is heat transfer from the wall; the converse applies for weak interstitial heat transfer. The melting process at a low interstitial Nusselt number is significantly influenced by melt convection, while the behavior is dominated by conduction at high interstitial Nusselt numbers. Volume shrinkage/expansion due to phase change induces an added flow, which affects the PCM melting rate.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012058
Author(s):  
M Silvestrini ◽  
M Falcone ◽  
F Salvi ◽  
C Naldi ◽  
M Dongellini ◽  
...  

Abstract The thermal performance of latent heat thermal energy storage (LHTES) systems considerably depends on thermal conductivity of adopted phase change materials (PCMs). To increase the low thermal conductivity of these materials, pure PCMs can be loaded with metal foams. In this study, the melting process of pure and metal-foam loaded phase change materials placed in a rectangular shape case is experimentally investigated by imposing a constant heat flux at the top. Two different paraffin waxes with melting point of about 35°C are tested. The results obtained with pure PCM are compared with those achieved from the use of PCM combined with two different porous metals: a 10 PPI aluminum foam with 96% porosity and a 20 PPI copper foam with 95% porosity. The results demonstrate how metal foams lead to a significant improvement of conduction heat transfer reducing significantly the melting time and the temperature difference between the heater and PCM.


Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


Author(s):  
Tingting Wu ◽  
Yanxin Hu ◽  
Xianqing Liu ◽  
Changhong Wang ◽  
Zijin Zeng ◽  
...  

Background: The employment of Phase Change Materials (PCMs) provides a potential selection for heat dissipation and energy storage. The main reason that hinders the wide application is the low thermal conductivity of PCMs. Combining the proper metal fin and copper foam, the fin/composite phase change material (Fin-CPCM) structure with good performance could be obtained. However, the flow resistance of liquid paraffin among the porous structure has seldom been reported, which will significantly affect the thermal performance inside the metal foam. Furthermore, the presence of porous metal foam is primarily helpful for enhancing the heat transfer process from the bottom heat source. The heat transfer rate is slow due to the one-dimensional heat transfer from the bottom. It should be beneficial for improving the heat transfer performance by adding external fins. Therefore, in the present study, a modified structure by combining the metal fin and copper foam is proposed to further accelerate the melting process and improve the temperature uniformity of the composite. Objective: The purpose of this study is to research the differences in the heat transfer performance among pure paraffin, Composite Phase Change Materials (CPCM) and fin/Composite Phase Change Material (Fin-CPCM) under different heating conditions, and the flow resistance of melting paraffin in copper foam. Methods: To experimentally research the differences in the heat transfer performance among pure paraffin, CPCM and Fin-CPCM under different heating conditions, a visual experimental platform was set up, and the flow resistance of melting paraffin in copper foam was also analyzed. In order to probe into the limits of the heat transfer capability of composite phase change materials, the temperature distribution of PCMs under constant heat fluxes and constant temperature conditions was studied. In addition, the evolution of the temperature distributions was visualized by using the infrared thermal imager at specific points during the melting process. Results: The experimental results showed that the maximum temperature of Fin-CPCM decreased by 21°C under the heat flux of 1500W/m2 compared with pure paraffin. At constant temperature heating conditions, the melting time of Fin-CPCM at a temperature of 75°C is about 2600s, which is 65% less than that of pure paraffin. Due to the presence of the external fins, which brings the advantage of improving the heat transfer rate, the experimental result exhibited the most uniform temperature distribution. Conclusion: The addition of copper foam can accelerate the melting process. The addition of external fins brings the advantage of improving the heat transfer rate, and can make the temperature distribution more uniform.


2020 ◽  
Vol 45 (29) ◽  
pp. 14922-14939 ◽  
Author(s):  
Hafsa El Mghari ◽  
Jacques Huot ◽  
Liang Tong ◽  
Jinsheng Xiao

Author(s):  
Y. Kozak ◽  
G. Ziskind

The ability of phase-change materials (PCMs) to absorb large amounts of heat without significant rise of their temperature during the melting process may be utilized in thermal energy storage and passive thermal management. This paper deals with numerical modeling of a hybrid PCM-air heat sink, in which heat may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. Under the assumptions of perfect insulation (except for the air fins), identity and symmetry between all PCM channels, and negligible 3-D boundary effects, a 2-D model of the problem for half a PCM compartment of the heat sink is solved, saving calculation time and yet taking into account the essential physical phenomena. A commercial program, ANSYS Fluent, is used in order to solve the governing conservation equations. Phase-change is solved using the enthalpy-porosity method. PCM-air interface is modeled using the volume-of-fluid (VOF) approach. The model takes into account natural convection in the liquid PCM and air, volume change, phase- and temperature-dependence of thermal properties, and PCM-air interface interaction. Various scenarios for the hybrid heat sink operation are simulated and compared. The difference in the melting patterns is analyzed for the cases of heating with and without the fan operating. The solidification process with the fan operating is also simulated. It is shown that the VOF model enables simulating realistic void formation in the solidification process.


Sign in / Sign up

Export Citation Format

Share Document