Quantitative validation of an in-flow water condensation model for 3D-CFD simulations of three-way junctions using indirect condensation measurements

2022 ◽  
Vol 172 ◽  
pp. 107303
Author(s):  
J. Galindo ◽  
R. Navarro ◽  
D. Tarí ◽  
F. Moya
2018 ◽  
Vol 167 ◽  
pp. 158-165 ◽  
Author(s):  
J.R. Serrano ◽  
P. Piqueras ◽  
R. Navarro ◽  
D. Tarí ◽  
C.M. Meano

Author(s):  
Jeongyong Choi ◽  
Sridev Satpathy ◽  
John Hoard ◽  
Daniel Styles ◽  
Chih-Kuang Kuan

In recent years, many engine manufacturers have turned to downsizing and boosting of gasoline engines in order to meet the ever more stringent fuel economy and emissions regulations. With an increase in the number of turbocharged gasoline engines, solutions are required to manage knock under a range of operating conditions. The charge air cooler has been introduced to mitigate knock. Moreover, the engine is required to operate with spark retard and/or boost reduction to provide knock reduction leading to reduced fuel economy. Under some operating conditions water can condense in the charge air cooler (CAC). Corrugated plate separators have been widely used in gas-water separation and oil-water separation in many industries including marine diesel engines. However, this sort of separator has not been applied to gasoline engines in vehicles to separate the condensation in the charged air. In this paper, a 1-D condensation model to estimate the potential amount of water condensation and entrainment from the charge air coolers is presented. An approach to designing a unit to separate condensation in the flow from the charge air cooler while maintaining a low pressure drop is described. The design approach provides correlations of separator geometries versus separation and pressure drop performance. The study is developed using a 3-D computational model for analyzing charge air and condensation flow. The model results of the 1-D condensation model and the 3-D computational model have been validated by experiments on an engine-dynamometer based test cell. The set-up incorporates a 4 cylinder gasoline direct injection (GDI) turbocharged engine. An air-to-air charge air cooler is mounted under the engine. The intake air for the engine is supplied using a combustion air unit which enables the operators to control the temperature and humidity. Test conditions have been identified to demonstrate the phenomenon of CAC water condensation. Measurements of water condensation and motion through the system confirm the results of models. A separator has been designed that achieves high separation efficiency and low pressure drop.


Author(s):  
A.M. Semiletov ◽  
◽  
Yu.B. Makarychev ◽  
A.A. Chirkunov ◽  
L.P. Kazansky ◽  
...  

The application of mixed corrosion inhibitor (CI), which is an equimolar composition of oleoyl sarcosinate (SOS) and sodium flufenamate (SFF), for protection of D16 aluminum alloy from atmospheric corrosion has been studied. The polarization measurements used to assess the effectiveness of preliminary passivation of the alloy with solutions of SOS, SFF and their composition showed significant advantages of mixed CI. The XPS method was used to study features of CI adsorption on the surface of D16 alloy. It has been established that upon adsorption of SOS and SFF separately a monolayer is formed, firmly bonded to the alloy surface, thickness of which is not exceeding 2.6—3.2 nm. After the joint adsorption of these CI, the layer thickness reaches 12—20 nm. The composition of this layer includes a considerable amount of Al3+ ions (~20%) related to their compounds with SFF and SOS, as well as to aluminum hydroxides. A possible mechanism for the formation of such a protective layer is proposed. The results of corrosion tests in a humid atmosphere with daily water condensation on samples of D16 alloy confirmed the high protective ability of the mixed CI film.


Author(s):  
Dilesh Maharjan ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner ◽  
Stefan K. Stefanov

During vacuum drying of used nuclear fuel (UNF) canisters, helium pressure is reduced to as low as 67 Pa to promote evaporation and removal of remaining water after draining process. At such low pressure, and considering the dimensions of the system, helium is mildly rarefied, which induces a thermal-resistance temperature-jump at gas–solid interfaces that contributes to the increase of cladding temperature. It is important to maintain the temperature of the cladding below roughly 400 °C to avoid radial hydride formation, which may cause cladding embrittlement during transportation and long-term storage. Direct Simulation Monte Carlo (DSMC) method is an accurate method to predict heat transfer and temperature under rarefied condition. However, it is not convenient for complex geometry like a UNF canister. Computational Fluid Dynamics (CFD) simulations are more convenient to apply but their accuracy for rarefied condition are not well established. This work seeks to validate the use of CFD simulations to model heat transfer through rarefied gas in simple two-dimensional geometry by comparing the results to the more accurate DSMC method. The geometry consists of a circular fuel rod centered inside a square cross-section enclosure filled with rarefied helium. The validated CFD model will be used later to accurately estimate the temperature of an UNF canister subjected to vacuum drying condition.


Particuology ◽  
2019 ◽  
Vol 47 ◽  
pp. 63-69
Author(s):  
Shuai Yang ◽  
Xiangdi Zhao ◽  
Wanfu Sun ◽  
Jiwu Yuan ◽  
Zheng Wang

Sign in / Sign up

Export Citation Format

Share Document