Transient thermogravitational convection for magneto hybrid nanofluid in a deep cavity with multiple isothermal source-sink pairs

Author(s):  
Krishno D. Goswami ◽  
Anirban Chattopadhyay ◽  
Swapan K. Pandit ◽  
Mikhail A. Sheremet
2021 ◽  
Vol 60 (3) ◽  
pp. 2947-2962
Author(s):  
T. Armaghani ◽  
M.S. Sadeghi ◽  
A.M. Rashad ◽  
M.A. Mansour ◽  
Ali J. Chamkha ◽  
...  

Author(s):  
R.J. Punith Gowda ◽  
R. Naveenkumar ◽  
J.K. Madhukesh ◽  
B.C. Prasannakumara ◽  
Rama Subba Reddy Gorla

The flow-through various disk movement has wide range of applications in manufacturing processes like, computer storage equipment’s, rotating machines, electronic and various types of medical equipment’s. Inspired from these applications, here we scrutinised the consequences of homogeneous-heterogeneous reactions and uniform heat source/sink on the three-dimensional (3D) hybrid SWCNT-MWCNT’s flow on time dependent moving upward/downward rotating disk. The renowned innovation of this paper is the application of the hybrid nanofluid made up of SWCNT and MWCNT’s. Heat generation/absorption effect for the disk that does not move up or down creates a dual flow on the disk. Alternatively, the rotation and upright motion of the disk creates a 3D flow on the surface which has not been considered in the open literature. The modelled PDE’s are reduced in to ODE’s by opting suitable similarity variables and boundary constraints. Here, we used RKF-45 method to obtain the numerical approximations by adopting shooting technique. The analysis of rate of heat transfer is done through graphs. Further, change in velocity, thermal and concentration profiles for various non-dimensional parameters are deliberated briefly and illustrated with the help of suitable plots. The results reveal that, the, rise in values of homogeneous and heterogeneous reaction parameters improve the rate of reaction which results in reduction of the distribution rate and diminishes the concentration gradient. An increase in expansion/contraction parameter enhances the velocity and thermal gradients.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 121-130
Author(s):  
Nur Faizzati Ahmad Faizal ◽  
Norihan Md Ariffin ◽  
Yong Faezah Rahim ◽  
Mohd Ezad Hafidz Hafidzuddin ◽  
Nadihah Wahi

In the presence of slips, non-uniform heat source/sink, thermal radiation and magnetohydrodynamic (MHD), micropolar hybrid nanofluid and heat transfer over a stretching sheet has been studied. The problem is modelled as a mathematical formulation that involves a system of the partial differential equation. The similarity approach is adopted, and self-similar ordinary differential equations are obtained and then those are solved numerically using the shooting method. The flow field is affected by the presence of physical parameters such as micropolar parameter, magnetic field parameter, suction parameter and slip parameter whereas the temperature field is affected by thermal radiation parameter, space-dependent parameter, temperature-dependent internal heat generation/absorption parameter, Prantl number and Biot number. The skin friction coefficient, couple stress and local Nusselt number are tabulated and analysed. The effects of the governing parameters on the velocity profiles, angular velocity profiles and temperature profiles are illustrated graphically. The results of velocity profiles, angular velocity profiles and temperature profiles are also obtained for several values of each parameters involved.


2017 ◽  
Vol 31 (4) ◽  
pp. 847-857 ◽  
Author(s):  
Rama Subba Reddy Gorla ◽  
Sadia Siddiqa ◽  
M. A. Mansour ◽  
A. M. Rashad ◽  
T. Salah

Sign in / Sign up

Export Citation Format

Share Document