scholarly journals Regulation of Class-Switch Recombination and Plasma Cell Differentiation by Phosphatidylinositol 3-Kinase Signaling

Immunity ◽  
2006 ◽  
Vol 25 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Sidne A. Omori ◽  
Matthew H. Cato ◽  
Amy Anzelon-Mills ◽  
Kamal D. Puri ◽  
Miriam Shapiro-Shelef ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (11) ◽  
pp. 1895-1898 ◽  
Author(s):  
Christelle Vincent-Fabert ◽  
Remi Fiancette ◽  
Eric Pinaud ◽  
Véronique Truffinet ◽  
Nadine Cogné ◽  
...  

Abstract The immunoglobulin heavy chain locus (IgH) undergoes multiple changes along B-cell differentiation. In progenitor B cells, V(D)J assembly allows expression of μ heavy chains. In mature B cells, class switch recombination may replace the expressed constant (C)μ gene with a downstream CH gene. Finally, plasma cell differentiation strongly boosts IgH transcription. How the multiple IgH transcriptional enhancers tune these changes is unclear. Here we demonstrate that deletion of the whole IgH 3′ regulatory region (3′RR) allows normal maturation until the stage of IgM/IgD expressing lymphocytes, but nearly abrogates class switch recombination to all CH genes. Although plasma cell numbers are unaffected, we reveal the role of the 3′RR into the transcriptional burst normally associated with plasma cell differentiation. Our study shows that transcriptional changes and recombinations occurring after antigen-encounter appear mainly controlled by the 3′RR working as a single functional unit.


2006 ◽  
Vol 7 (7) ◽  
pp. 773-782 ◽  
Author(s):  
Ulf Klein ◽  
Stefano Casola ◽  
Giorgio Cattoretti ◽  
Qiong Shen ◽  
Marie Lia ◽  
...  

2014 ◽  
Vol 211 (11) ◽  
pp. 2169-2181 ◽  
Author(s):  
Sebastian Carotta ◽  
Simon N. Willis ◽  
Jhagvaral Hasbold ◽  
Michael Inouye ◽  
Swee Heng Milon Pang ◽  
...  

Activated B cells undergo immunoglobulin class-switch recombination (CSR) and differentiate into antibody-secreting plasma cells. The distinct transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors: those that maintain the B cell program, including BCL6 and PAX5, and plasma cell–promoting factors, such as IRF4 and BLIMP-1. We show that the complex of IRF8 and PU.1 controls the propensity of B cells to undergo CSR and plasma cell differentiation by concurrently promoting the expression of BCL6 and PAX5 and repressing AID and BLIMP-1. As the PU.1–IRF8 complex functions in a reciprocal manner to IRF4, we propose that concentration-dependent competition between these factors controls B cell terminal differentiation.


Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5438-5448 ◽  
Author(s):  
Miki Watanabe-Matsui ◽  
Akihiko Muto ◽  
Toshitaka Matsui ◽  
Ari Itoh-Nakadai ◽  
Osamu Nakajima ◽  
...  

Abstract Heme binds to proteins to modulate their function, thereby functioning as a signaling molecule in a variety of biologic events. We found that heme bound to Bach2, a transcription factor essential for humoral immunity, including antibody class switch. Heme inhibited the DNA binding activity of Bach2 in vitro and reduced its half-life in B cells. When added to B-cell primary cultures, heme enhanced the transcription of Blimp-1, the master regulator of plasma cells, and skewed plasma cell differentiation toward the IgM isotype, decreasing the IgG levels in vitro. Intraperitoneal injection of heme in mice inhibited the production of antigen-specific IgM when heme was administered simultaneously with the antigen but not when it was administered after antigen exposure, suggesting that heme also modulates the early phase of B-cell responses to antigen. Heme oxygenase-1, which is known to be regulated by heme, was repressed by both Bach2 and Bach1 in B cells. Furthermore, the expression of genes for heme uptake changed in response to B-cell activation and heme administration. Our results reveal a new function for heme as a ligand of Bach2 and as a modulatory signal involved in plasma cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document