Moisture sorption and water vapor permeability of soy protein isolate/poly(vinyl alcohol)/glycerol blend films

2010 ◽  
Vol 31 (2) ◽  
pp. 266-276 ◽  
Author(s):  
Jun-Feng Su ◽  
Zhen Huang ◽  
Ying-Hui Zhao ◽  
Xiao-Yan Yuan ◽  
Xin-Yu Wang ◽  
...  
2010 ◽  
Vol 96 ◽  
pp. 75-79 ◽  
Author(s):  
Jun Feng Su ◽  
Wen Long Xia ◽  
Wen Li ◽  
Ke Man Jin

The aim of the present work was to investigate the moisture sensitivity of soy protein isolate (SPI) films blending with poly (vinyl alcohol) (PVA) plasticized by glycerol. Water vapor permeability (WVP) was measured based on the contents of PVA and glycerol in films. WVP values of various SPI/PVA films with/without glycerol were in the range of 8.25 and 10.9 g mm/m2 h kPa. The results showed that WVP values decreased with the increasing content of PVA. Moreover, XRD tests confirmed that the glycerol would insert into the macromolecular blending structure and destroy the crystalline of blends, and the crosslinkage between glycerol molecules and SPI reduced the interstitial spaces in protein matrix, thus allowing for decreasing diffusion rate of water molecules through the films.


2010 ◽  
Vol 150-151 ◽  
pp. 1396-1399 ◽  
Author(s):  
Xi Hong Li ◽  
Kuan Guo ◽  
Xiao Yan Zhao

This paper explains and demonstrates the effects of beeswax on functional and structural properties of soy protein isolate films, containing different glycerol. The results showed that percentage elongation at break, water vapor permeability, and transparency of soy protein isolate films decreased when the beeswax content increased, but tensile strength and oxygen permeability increased. The higher the glycerol content, the higher the film water vapor permeability, oxygen permeability, and transparency. The results of differential scanning calorimetry and Fourier transform infrared spectroscopy suggested that beeswax cross-linked with soy protein isolate molecules via connecting with glycerol, composed the film matrix.


2010 ◽  
Vol 178 ◽  
pp. 151-155 ◽  
Author(s):  
Jun Feng Su ◽  
Shan Shan Wang ◽  
Wen Long Xia

The objective of this work was to investigate the color stability in air under photo-oxidative degradation influencing consumer acceptance and biodegradation behaviors in soil of soy protein isolate (SPI)/poly (vinyl alcohol) (PVA) blend packaging films during 30 days. The results showed that PVA could dilute the yellow color and make the SPI-based films less darkness in application and the transparency of SPI/PVA films at various stages of degradation was improved. Aerobic biodegradation of films in soil proved that the PVA compound interacting with protein imposed negative effects on biodegradation of blend films prolonging their decomposing time. The SPI/PVA blend films decomposed into small fragments of less complex molecules along with surface completely digested after 30 days.


2021 ◽  
Author(s):  
Aritra Sinha

Abstract This study focuses on the development and characterization of a novel biodegradable edible film made from soy protein isolate enriched with alginate-glycyrrhizin nanogel(GL-ALG NGP). Nanoparticles of particle sizes below 100 nm were synthesized using glycyrrhizin(GL), calcium chloride and, sodium alginate(SA) through the reverse micro-emulsion/internal gelation method. Soy protein isolate (SPI) based films were prepared by a simple casting procedure by incorporating GL-ALG NGPs in SPI solution in different ratios of (SPI: GL-ALG NGPs) 5:0, 5:1, 2:1, 1:1, and 1:1.5. Glycerol was used as a plasticizer in the film-forming solution. The effects of the proportions of GL-ALG NGPs addition on the thickness, mechanical properties, water vapor permeability, UV barrier performance, antioxidant activity, and antimicrobial property of the obtained films were studied. The GL-ALG NGPs were analyzed using Dynamic Light Scattering. Microstructural studies of obtained films were performed using Scanning Electron microscopy. Results show incorporation of GL-ALG NGPs in soy protein-alginate complex produced smoother, compact, and more continuous matrices as compared to pure SPI films. The test results indicated that blending of SPI with GL-ALG NGPs in the ratio 1:1 increased tensile strength of obtained films by 185%, reduced water solubility to 23.59%, and water vapor permeability to 0.3087 g-mm/m2-d-kPa. Obtained films exhibited good UV barrier performance, antioxidant activity and inhibited the growth of E. coli, S. aureus, Enterobacter sakazakii, and A. niger. So, soy protein isolate-based films enriched with GL-ALG NGPs are active biodegradable edible films that can be used to extend the shelf life of food products.


2010 ◽  
Vol 115 (3) ◽  
pp. 1901-1911 ◽  
Author(s):  
Jun-Feng Su ◽  
Xin-Yu Wang ◽  
Zhen Huang ◽  
Xiao-Yan Yuan ◽  
Min Li ◽  
...  

1994 ◽  
Vol 2 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Aristippos Gennadios ◽  
Alice H. Brandenburg ◽  
Jang W. Park ◽  
Curtis L. Weller ◽  
Robert F. Testin

Sign in / Sign up

Export Citation Format

Share Document