AMF and PGPR enhance yield and secondary metabolite profile of basil (Ocimum basilicum L.)

2022 ◽  
Vol 176 ◽  
pp. 114327
Author(s):  
Abdurrahim Yilmaz ◽  
Ünal Karik
Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 108
Author(s):  
Xiyan Wang ◽  
Thomas Isbrandt ◽  
Mikael Lenz Strube ◽  
Sara Skøtt Paulsen ◽  
Maike Wennekers Nielsen ◽  
...  

Genome mining of pigmented Pseudoalteromonas has revealed a large potential for the production of bioactive compounds and hydrolytic enzymes. The purpose of the present study was to explore this bioactivity potential in a potent antibiotic and enzyme producer, Pseudoalteromonas rubra strain S4059. Proteomic analyses (data are available via ProteomeXchange with identifier PXD023249) indicated that a highly efficient chitin degradation machinery was present in the red-pigmented P. rubra S4059 when grown on chitin. Four GH18 chitinases and two GH20 hexosaminidases were significantly upregulated under these conditions. GH19 chitinases, which are not common in bacteria, are consistently found in pigmented Pseudoalteromonas, and in S4059, GH19 was only detected when the bacterium was grown on chitin. To explore the possible role of GH19 in pigmented Pseudoalteromonas, we developed a protocol for genetic manipulation of S4059 and deleted the GH19 chitinase, and compared phenotypes of the mutant and wild type. However, none of the chitin degrading ability, secondary metabolite profile, or biofilm-forming capacity was affected by GH19 deletion. In conclusion, we developed a genetic manipulation protocol that can be used to unravel the bioactive potential of pigmented pseudoalteromonads. An efficient chitinolytic enzyme cocktail was identified in S4059, suggesting that this strain could be a candidate with industrial potential.


2012 ◽  
Vol 49 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Yazmid Reyes-Dominguez ◽  
Stefan Boedi ◽  
Michael Sulyok ◽  
Gerlinde Wiesenberger ◽  
Norbert Stoppacher ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nisha Dhiman ◽  
Nitesh Kumar Sharma ◽  
Pooja Thapa ◽  
Isha Sharma ◽  
Mohit Kumar Swarnkar ◽  
...  

Abstract This is the first report on de novo transcriptome of Dactylorhiza hatagirea, a critically-endangered, terrestrial orchid of alpine Himalayas. The plant is acclaimed for medicinal properties but little is known about its secondary-metabolites profile or cues regulating their biosynthesis. De novo transcriptome analysis was therefore, undertaken to gain basic understanding on these aspects, while circumventing the acute limitation of plant material availability. 65,384 transcripts and finally, 37,371 unigenes were assembled de novo from a total of 236 million reads obtained from shoot, tuber and leaves of the plant. Dominance of differentially-expressing-genes (DEGs) related to cold-stress-response and plant-hormone-signal-transduction; and those involved in photosynthesis, sugar-metabolism and secondary-metabolite-synthesis provided insights into carbohydrate-partitioning in the plant during its preparation for freezing winter at natural habitat. DEGs of glucomannan, ascorbic acid, carotenoids, phylloquinone/naphthoquinones, indole alkaloids, resveratrol and stilbene biosynthesis revealed the secondary-metabolite profile of D. hatagirea. UHPLC results confirmed appreciable amounts of resveratrol and trans-stilbene in D. hatagirea tubers, for the first time. Expression analysis of 15 selected genes including those of phenylpropanoid pathway confirmed the validity of RNA-seq data. Opportunistic growth, temperature- and tissue-specific-differential-expression of secondary metabolite biosynthesis and stress tolerant genes were confirmed using clonal plants growing at 8, 15 and 25 °C.


Author(s):  
Milana Trifunović-Momčilov ◽  
Dijana Krstić-Milošević ◽  
Snežana Trifunović ◽  
Ana Podolski-Renić ◽  
Milica Pešić ◽  
...  

2018 ◽  
Vol 23 (2) ◽  
pp. 91
Author(s):  
Nancy Dewi Yuliana ◽  
Muhammad Anwari Sugiharto ◽  
Hanifah Nuryani Lioe ◽  
Masao Goto ◽  
Yuko Takano Ishikawa

Plectranthus amboinicus has been reported to have antidiabetic and antioxidant activities. Environmental factors might influence the plant’s secondary metabolite profile and its beneficial properties. NMR-based metabolomics was used to show phytochemical variations between specimens of P. amboinicus grown in Japan and Indonesia. The results showed that flavonoids and triterpenes were among the discriminating factors of the variation between the two groups. Targeted comparative analysis of the concentration of the specific flavonoids of the plants using a validated HPLC-MWD method showed that the Japanese samples contained a higher concentration of total flavonoids compared with the Indonesian samples. The Japanese and Indonesian samples contained 1100.6 ± 5.1 and 532.4 ± 1.8 µg/g luteolin, and 584.5 ± 7.4 and 571.7 ± 11.6 µg/g apigenin, respectively. Eriodyctiol was detected only in the Indonesian samples. Contrarily, more intensive DPPH reduction and α-glucosidase inhibition activities were found in the Indonesian samples (IC50 14.4 ± 1.2 and 24.0 ± 0.3 µg/mL for the DPPH assay, 1181.9 ± 113.5 and 4451.4 ± 290.0 µg/mL for α-glucosidase inhibition, respectively). Thus, flavonoids might not be the only group of compounds related to the aforementioned bioactivities. This should be confirmed by further research targeting other groups of compounds, such as triterpenes.


2019 ◽  
Vol 72 (3) ◽  
pp. 437-444
Author(s):  
Ambika Rautela ◽  
Meenakshi Dwivedi ◽  
A. K. Tewari ◽  
J. Kumar

2011 ◽  
Vol 8 (12) ◽  
pp. 2226-2237 ◽  
Author(s):  
Immacolata Caruso ◽  
Laura Lepore ◽  
Nunziatina De Tommasi ◽  
Fabrizio Dal Piaz ◽  
Luigi Frusciante ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document