metabolite profile
Recently Published Documents


TOTAL DOCUMENTS

611
(FIVE YEARS 287)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 374 ◽  
pp. 131740
Author(s):  
Caio de Oliveira Gorgulho Silva ◽  
Joice Raisa Barbosa Cunha ◽  
Aparecido Almeida Conceição ◽  
Euziclei Gonzaga Almeida ◽  
Diego Cunha Zied ◽  
...  

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Engy A. Mahrous ◽  
Ahmed H. Elosaily ◽  
Abeer A. A. Salama ◽  
Ahmed M. Salama ◽  
Soheir M. El-zalabani

Jatropha integerrima Jacq., family: Euphorbiaceae, is used in India and subtropical Africa to treat different skin conditions. In this study we evaluated the anti-inflammatory activity of J. integerrima leaves extract (JILE) using rat paw edema model. The extract was administered orally (200 and 400 mg/kg) or applied topically as creams at 2.5, 5, and 10% strength. Four hours post-treatment, maximum reduction of edema volume by 63.09% was observed after oral administration of JILE (400 mg/kg) as compared to indomethacin with 60.43%. The extract anti-inflammatory effect was accompanied by a decrease in NO, prostaglandin PGE2, TNF-a and PKC levels by 19, 29.35, 16.9, and 47.83%, respectively. Additionally, topical applications of JILE showed dose dependent reduction in paw edema and resulted in normalized levels of PGE2, TNF-a, and PKC when used as 10% cream. Signs of inflammations were reduced or absent from paw tissue of animals receiving JILE either orally or topically. Finally, liquid chromatography/mass spectrometry analysis of JILE resulted in the annotation of 133 metabolites including 24 diterpenoids, 19 flavonoids, 10 phenolic acid conjugates, 8 cyclic peptides, 6 phytosterols, 4 sesquiterpenes, and 4 coumarins. Several of the annotated metabolites have known anti-inflammatory activity including vitexin, isovitexin, fraxitin, scopeltin, stigmasterol, and many diterpenoidal derivatives.


2022 ◽  
Vol 12 ◽  
Author(s):  
Meng Ren ◽  
Diao zhu Lin ◽  
Zhi Peng Liu ◽  
Kan Sun ◽  
Chuan Wang ◽  
...  

BackgroundIdentifying the metabolite profile of individuals with prediabetes who turned to type 2 diabetes (T2D) may give novel insights into early T2D interception. The purpose of this study was to identify metabolic markers that predict the development of T2D from prediabetes in a Chinese population.MethodsWe used an untargeted metabolomics approach to investigate the associations between serum metabolites and risk of prediabetes who turned to overt T2D (n=153, mean follow up 5 years) in a Chinese population (REACTION study). Results were compared with matched controls who had prediabetes at baseline [age: 56 ± 7 years old, body mass index (BMI): 24.2 ± 2.8 kg/m2] and at a 5-year follow-up [age: 61 ± 7 years old, BMI: 24.5 ± 3.1 kg/m2]. Confounding factors were adjusted and the associations between metabolites and diabetes risk were evaluated with multivariate logistic regression analysis. A 10-fold cross-validation random forest classification (RFC) model was used to select the optimal metabolites panels for predicting the development of diabetes, and to internally validate the discriminatory capability of the selected metabolites beyond conventional clinical risk factors.FindingsMetabolic alterations, including those associated with amino acid and lipid metabolism, were associated with an increased risk of prediabetes progressing to diabetes. The most important metabolites were inosine [odds ratio (OR) = 19.00; 95% confidence interval (CI): 4.23-85.37] and carvacrol (OR = 17.63; 95% CI: 4.98-62.34). Thirteen metabolites were found to improve T2D risk prediction beyond eight conventional T2D risk factors [area under the curve (AUC) was 0.98 for risk factors + metabolites vs 0.72 for risk factors, P < 0.05].InterpretationsUse of the metabolites identified in this study may help determine patients with prediabetes who are at highest risk of progressing to diabetes.


Author(s):  
Lianyu Zhou ◽  
Lu Jiao ◽  
Jiasheng Ju ◽  
Xuelan Ma

AbstractSelenium (Se) is an essential micronutrient with many beneficial effects for humans and other living organisms. Numerous microorganisms in culture systems enrich and convert inorganic selenium to organic selenium. In this study, Epichloë sp. from Festuca sinensis was exposed to increasing Na2SeO3 concentrations (0, 0.1, 0.2, 0.3, and 0.4 mmol/L) in Petri dishes with potato dextrose agar (PDA) for 8 weeks. Epichloë sp. mycelia were immediately collected after mycelial diameters were measured at 4, 5, 6, 7, and 8 weeks of cultivation, respectively. Gas chromatography-mass spectrometer (GC-MS) analysis was performed on different groups of Epichloë sp. mycelia. Different changes were observed as Epichloë sp. was exposed to different selenite conditions and cultivation time. The colony diameter of Epichloë sp. decreased in response to increased selenite concentrations, whereas the inhibitory effects diminished over time. Seventy-two of the 203 identified metabolites did not differ significantly across selenite treatments within the same time point, while 82 compounds did not differ significantly between multiple time points of the same Se concentration. However, the relative levels of 122 metabolites increased the most under selenite conditions. Specifically, between the 4th and 8th weeks, there were increases in 2-keto-isovaleric acid, uridine, and maltose in selenite treatments compared to controls. Selenium increased glutathione levels and exhibited antioxidant properties in weeks 4, 5, and 7. Additionally, we observed that different doses of selenite could promote the production of carbohydrates such as isomaltose, cellobiose, and sucrose; fatty acids such as palmitoleic acid, palmitic acid, and stearic acid; and amino acids such as lysine and tyrosine in Epichloë sp. mycelia. Therefore, Epichloë sp. exposed to selenite stress may benefit from increased levels of some metabolite compounds.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Giuseppe De Marco ◽  
Fátima Brandão ◽  
Patrícia Pereira ◽  
Mário Pacheco ◽  
Tiziana Cappello

Metabolomics is a powerful approach in evaluating the health status of organisms in ecotoxicological studies. However, metabolomics data reflect metabolic variations that are attributable to factors intrinsic to the environment and organism, and it is thus crucial to accurately evaluate the metabolome of the tissue/organ examined when it is exposed to no stressor. The metabolomes of the liver and gills of wild golden grey mullet (Chelon auratus) from a reference area were analyzed and compared by proton nuclear magnetic resonance (1H NMR)-based metabolomics. Both organs were characterized by amino acids, carbohydrates, osmolytes, nucleosides and their derivatives, and miscellaneous metabolites. However, similarities and differences were revealed in their metabolite profile and related to organ-specific functions. Taurine was predominant in both organs due to its involvement in osmoregulation in gills, and detoxification and antioxidant protective processes in liver. Environmental exposure to mercury (Hg) triggered multiple and often differential metabolic alterations in fish organs. Disturbances in ion-osmoregulatory processes were highlighted in the gills, whereas differential impairments between fish organs were pointed out in energy-producing metabolic pathways, protein catabolism, membrane stabilization processes, and antioxidant defense system, reflecting the induction of organ-specific adaptive and defensive strategies. Overall, a strict correlation between metabolites and organ-specific functions of fish gills and liver were discerned in this study, as well as organ-specific cytotoxicity mechanisms of Hg in fish.


2021 ◽  
Vol 19 ◽  
Author(s):  
Morgan L. Denzer ◽  
Frank Kiyimba ◽  
Gretchen G. Mafi ◽  
Ranjith Ramanathan

Objective: Meat is biochemically active, and the various pre-and post-harvest processes can affect meat quality. Metabolomics is a valuable tool to elucidate metabolite changes in meat. The overall goal of this study was to provide an overview of various techniques, data analysis, and application of metabolomics in meat color research. Results: Both targeted and non-targeted approaches have been used to determine metabolite profiles in meat. Researchers use gas-, liquid-chromatography, and nuclear magnetic resonance platforms to separate molecules. Metabolomics is used to characterize muscle-specific differences in color stability, meat tenderness, the impact of aging on meat color, and to determine metabolite profile differences between normal-pH and dark-cutting beef. Color stable muscles have more glycolytic metabolites than color labile muscles. Conclusion: The use of metabolomics has greatly enhanced our understanding of metabolites' role in meat quality. There are challenges in data analysis; thus, there is a need for multiple platforms in order to obtain comprehensive metabolite libraries specific to food. Metabolomics in combination with wet-laboratory techniques can provide novel insights on the relationship between postmortem metabolism and meat color.


Sign in / Sign up

Export Citation Format

Share Document