Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approach

2018 ◽  
Vol 40 ◽  
pp. 34-44 ◽  
Author(s):  
Mingquan Wu ◽  
Wenjiang Huang ◽  
Zheng Niu ◽  
Changyao Wang ◽  
Wang Li ◽  
...  
2021 ◽  
Author(s):  
Xiaofang Ling ◽  
Ruyin Cao

<p>The Normalized Difference Vegetation Index (NDVI) data provided by the satellite Landsat have rich historical archive data with a spatial resolution of 30 m. However, the Landsat NDVI time-series data are quite discontinuous due to its 16-day revisit cycle, cloud contamination and some other factors. The spatiotemporal data fusion technology has been proposed to reconstruct continuous Landsat NDVI time-series data by blending the MODIS data with the Landsat data. Although a number of spatiotemporal fusion algorithms have been developed during the past decade, most of the existing algorithms usually ignore the effective use of partially cloud-contaminated images. In this study, we presented a new spatiotemporal fusion method, which employed the cloud-free pixels in the partially cloud-contaminated images to improve the performance of MODIS-Landsat data fusion by <strong>C</strong>orrecting the inconsistency between MODIS and Landsat data in <strong>S</strong>patiotemporal <strong>DA</strong>ta <strong>F</strong>usion (called CSDAF). We tested the new method at three sites covered by different vegetation types, including deciduous forests in the Shennongjia Forestry District of China (SNJ), evergreen forests in Southeast Asia (SEA), and the irrigated farmland in the Coleambally irrigated area of Australia (CIA). Two experiments were designed. In experiment I, we first simulated different cloud coverages in cloud-free Landsat images and then used both CSDAF and the recently developed IFSDAF method to restore these “missing” pixels for quantitative assessments. Results showed that CSDAF performed better than IFSDAF by achieving the smaller average Root Mean Square Error (RMSE) values (0.0767 vs. 0.1116) and the larger average Structural SIMilarity index (SSIM) values (0.8169 vs. 0.7180). In experiment II, we simulated the scenario of “inconsistence” between MODIS and Landsat by simulating different levels of noise on MODIS and Landsat data. Results showed that CSDAF was able to reduce the influence of the inconsistence between MODIS and Landsat data on MODIS-Landsat data fusion to some extent. Moreover, CSDAF is simple and can be implemented on the Google Earth Engine. We expect that CSDAF is potentially to be used to reconstruct Landsat NDVI time-series data at the regional and continental scales.</p>


2019 ◽  
Vol 11 (14) ◽  
pp. 1683 ◽  
Author(s):  
Yangchengsi Zhang ◽  
Long Guo ◽  
Yiyun Chen ◽  
Tiezhu Shi ◽  
Mei Luo ◽  
...  

High-precision maps of soil organic carbon (SOC) are beneficial for managing soil fertility and understanding the global carbon cycle. Digital soil mapping plays an important role in efficiently obtaining the spatial distribution of SOC, which contributes to precision agriculture. However, traditional soil-forming factors (i.e., terrain or climatic factors) have weak variability in low-relief areas, such as plains, and cannot reflect the spatial variation of soil attributes. Meanwhile, vegetation cover hinders the acquisition of the direct information of farmland soil. Thus, useful environmental variables should be utilized for SOC prediction and the digital mapping of such areas. SOC has an important effect on crop growth status, and remote sensing data can record the apparent spectral characteristics of crops. The normalized difference vegetation index (NDVI) is an important index reflecting crop growth and biomass. This study used NDVI time series data rather than traditional soil-forming factors to map SOC. Honghu City, located in the middle of the Jianghan Plain, was selected as the study region, and the NDVI time series data extracted from Landsat 8 were used as the auxiliary variables. SOC maps were estimated through stepwise linear regression (SLR), partial least squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN). Ordinary kriging (OK) was used as the reference model, while root mean square error of prediction (RMSEP) and coefficient of determination of prediction (R2P) were used to evaluate the model performance. Results showed that SOC had a significant positive correlation in July and August (0.17, 0.29) and a significant negative correlation in January, April, and December (−0.23, −0.27, and −0.23) with NDVI time series data. The best model for SOC prediction was generated by ANN, with the lowest RMSEP of 3.718 and highest R2P of 0.391, followed by SVM (RMSEP = 3.753, R2P = 0.361) and PLSR (RMSEP = 4.087, R2P = 0.283). The SLR model was the worst model, with the lowest R2P of 0.281 and highest RMSEP of 3.930. ANN and SVM were better than OK (RMSEP = 3.727, R2P = 0.372), whereas PLSR and SLR were worse than OK. Moreover, the prediction results using single-data NDVI or short time series NDVI showed low accuracy. The effect of the terrain factor on SOC prediction represented unsatisfactory results. All these results indicated that the NDVI time series data can be used for SOC mapping in plain areas and that the ANN model can maximally extract additional associated information between NDVI time series data and SOC. This study presented an effective method to overcome the selection of auxiliary variables for digital soil mapping in plain areas when the soil was covered with vegetation. This finding indicated that the time series characteristics of NDVI were conducive for predicting SOC in plains.


2004 ◽  
Vol 91 (3-4) ◽  
pp. 332-344 ◽  
Author(s):  
Jin Chen ◽  
Per. Jönsson ◽  
Masayuki Tamura ◽  
Zhihui Gu ◽  
Bunkei Matsushita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document