scholarly journals Masquelet technique for reconstructing bone defects in open lower limb fracture: Analysis of the relationship between bone defect and bone graft

Injury ◽  
2020 ◽  
Author(s):  
Peng Wang ◽  
Yongwei Wu ◽  
Yongjun Rui ◽  
Jianbing Wang ◽  
Jun Liu ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
pp. 388-391
Author(s):  
Thiyagarajan U ◽  
Senthil Loganathan ◽  
Raghavendar ◽  
Pradeep P

The Masquelet technique was originally described for the treatment of an infected non-union with an extensive bone defect where a staged protocol was needed to first eliminate an infection then secondarily bone graft a defect. Though this is a versatile technique, certain limitations/ complications must be recognized. The study was done between 2012 to 2019 at SRIHER university. 19 patients in whom the Masquelet technique has failed is taken into study. 17 male and two females, with a mean age of 31 years (range of 13 yrs. – 51 yrs.) with a mean follow up of 12 months. The 19 patients who presented with Pseudomonas aeruginosa infected non-union of the tibia and femur with bone defects underwent the Masquelet technique. All patients failed to form adequate induced membrane at the non-union site. Infected non-union with a bone defect is difficult to treat. Bone defects of 2cms can be treated by cancellous bone grafting. Defects more than 4-5cms will require specialized reconstructive procedures to prevent amputation. The two common techniques used are Ilizarov technique with bone transport and bone graft into an induced membrane as described by Masquelet. This study shows a high failure rate of the Masquelet technique with Pseudomonas infection. The most difficult issue faced by the surgeon in treating P. aeruginosa is its ability to develop resistance to multiple classes of antibiotics during the course of treating the patient. Masquelet technique is used extensively for the treatment of infective non-union. Pseudomonas secretes a slime layer that may lead to a weak or deficient formation of the induced membrane. And the elution of antibiotics may not be adequate for intramedullary osteomyelitis with pseudomonas growth. This limits the Masquelet technique in the management of infected non-union with pseudomonas infection.


Author(s):  
Satoshi Hatashita ◽  
Ryoichi Kawakami ◽  
Soichi Ejiri ◽  
Nobuyuki Sasaki ◽  
Narihiro Toshiki ◽  
...  

2021 ◽  
pp. 611-616
Author(s):  
Mark Jackson

Bone defects in the lower limb are the result of trauma, tumour resection, infection, or congenital defects. They can be classified by cause or extent. The management depends on the extent. Options for treatment include allowing the defect to heal, augmenting a partial defect with bone graft, or in the case of segmental defects either shortening the bone to allow direct healing or replacing the segmental defect by techniques of bone transport, the Masquelet technique of membrane induction of bone graft incorporation, massive allograft replacement, or using the variety of vascularized bone flaps available.


Injury ◽  
2021 ◽  
Author(s):  
Gonzalo Luengo-Alonso ◽  
Ismael Auñon Martin ◽  
Victor Rodriguez Vega ◽  
Aranzazu Capel Agundez ◽  
Pedro Caba Doussoux

Author(s):  
Selina Gaida ◽  
Uwe Schweigkofler ◽  
Wibke Moll ◽  
Michael Sauerbier ◽  
Reinhard Hoffmann

AbstractLarge bone defects or complex pseudarthrosis represent an interdisciplinary challenge. Established surgical procedures include autogenous cancellous bone graft, the Masquelet technique or bone transfer via segment transport as well as free microvascular bone transplantation. However, the successful use of all these techniques requires a specialized center with great interdisciplinary expertise. In the following case series we describe the technique of free fibula transplantation and additional allograft. In both cases a good functional result with full mechanical strength of the affected extremity and satisfactory patient comfort has been achieved. In the second case, implant failure with the necessity of revision endoprosthetics occurred during the procedure.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaojie Lian ◽  
Kezheng Mao ◽  
Xi Liu ◽  
Xiumei Wang ◽  
Fuzhai Cui

A novel antibacterial bone graft substitute was developed to repair bone defects and to inhibit related infections simultaneously. This bone composite was prepared by introducing vancomycin (VCM) to nanohydroxyapatite/collagen/calcium sulphate hemihydrate (nHAC/CSH). XRD, SEM, and CCK-8 tests were used to characterize the structure and morphology and to investigate the adhesion and proliferation of murine osteoblastic MC3T3-E1 cell on VCM/nHAC/CSH composite. The effectiveness in restoring infectious bone defects was evaluatedin vivousing a rabbit model of chronic osteomyelitis. Ourin vivoresults implied that the VCM/nHAC/CSH composite performed well both in antibacterial ability and in bone regeneration. This novel bone graft substitute should be very promising for the treatment of bone defect-related infection in orthopedic surgeries.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Tak Man Wong ◽  
Tak Wing Lau ◽  
Xin Li ◽  
Christian Fang ◽  
Kelvin Yeung ◽  
...  

Masquelet technique, which is the use of a temporary cement spacer followed by staged bone grafting, is a recent treatment strategy to manage a posttraumatic bone defect. This paper describes a series of 9 patients treated with this technique of staged bone grafting following placement of an antibiotic spacer to successfully manage osseous long bone defects. The injured limbs were stabilized and aligned at the time of initial spacer placement. In our series, osseous consolidation was successfully achieved in all cases. This technique gives promising result in the management of posttraumatic bone defects.


Author(s):  
Tie Liu ◽  
Wen Fang ◽  
Gang Wu ◽  
Yining Li ◽  
Janak L. Pathak ◽  
...  

Background: Bone grafts are in high demand due to the increase in the cases of bone defects mainly caused by trauma, old age, and disease-related bone damages. Tissue-engineered calcium phosphate (CaP) biomaterials match the major inorganic contents of bone, thereby could be the potential bone graft substitute. However, CaP-bone grafts lack the osteoinductivity that is vital for effective bone regeneration. In this study, we aimed to test the bone defect healing potential of biomimetically fabricated low dose BMP2-doped CaP (BMP2.BioCaP) grafts in a large animal model.Methods: Low dose BMP2 was doped internally (BMP2-int.BioCaP) or on the surface of CaP (BMP2-sur.BioCaP) grafts during the fabrication process. Our previous study showed the robust bone regenerative potential of BMP2-int.BioCaP and BMP2-sur.BioCaP grafts in the rat ectopic model. In this study, we investigated the bone defect healing potential of BMP2.BioCaP grafts in sheep humerus/femoral defects, as well as compared with that of autologous bone graft and clinically used deproteinized bovine bone (DBB) xenograft.Results: Different ways of BMP2 doping did not affect the surface morphology and degradation properties of the graft materials. Micro-CT and histology results showed robustly higher bone defect-healing potential of the BMP2.BioCaP grafts compared to clinically used DBB grafts. The bone defect healing potential of BMP2.BioCaP grafts was as effective as that of the autologous bone graft. Although, BMP2-int.BioCaP doped half the amount of BMP2 compared to BMP2-sur.BioCaP, its' bone defect healing potential was even robust. The BMP2.BioCaP grafts showed less immunogenicity compared to BioCaP or DBB grafts. The volume density of blood vessel-like and bone marrow-like structures in both BMP2.BioCaP graft groups were in a similar extent to the autologous group. Meticulous observation of higher magnification histological images showed active bone regeneration and remodeling during bone defect healing in BMP2.BioCaP graft groups.Conclusion: The robust bone regenerative potential of BMP2.BioCaP grafts in the ectopic model and in-situ bone defects in small and large animals warrant the pre-clinical studies on large animal critical-sized segmental bone defects.


Author(s):  
Azimah Ahmad Zainol Hady ◽  
Liyana Azmi ◽  
Amira Raudhah Abdullah

Bone can heal on its own through the process known as bone remodelling. Nonetheless, a critical size bone defect will hinder the natural bone-healing process and may not allow for complete fracture healing. These requires surgical intervention by employing the use of bone tissue implants and in need of realignment and fixation for proper fracture healing. Traditional knowledge of bone injury and fracture healing must be comprehended thoroughly for a proper invention of bioengineered material or devices that could enhance the physiological process. Heretofore, engineered materials used to address critical size bone defects have encountered various challenges and improvement be it in bone grafting or choices of mechanical stabilization devices. To date, researchers have been mainly focussing on the alternative material for bone graft substitute albeit the selection of fixators to establish mechanical stabilization are as important. This review highlighted the challenges, improvement and advancement in mechanical stabilization devices and bone graft substitute with respect to the physiological process of bone fracture healing. Identifying these challenges would help assist the researcher in an expedition toward the recovery and restoration of critical size bone defects.


Sign in / Sign up

Export Citation Format

Share Document