scholarly journals In VivoOsteogenesis of Vancomycin Loaded Nanohydroxyapatite/Collagen/Calcium Sulfate Composite for Treating Infectious Bone Defect Induced by Chronic Osteomyelitis

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaojie Lian ◽  
Kezheng Mao ◽  
Xi Liu ◽  
Xiumei Wang ◽  
Fuzhai Cui

A novel antibacterial bone graft substitute was developed to repair bone defects and to inhibit related infections simultaneously. This bone composite was prepared by introducing vancomycin (VCM) to nanohydroxyapatite/collagen/calcium sulphate hemihydrate (nHAC/CSH). XRD, SEM, and CCK-8 tests were used to characterize the structure and morphology and to investigate the adhesion and proliferation of murine osteoblastic MC3T3-E1 cell on VCM/nHAC/CSH composite. The effectiveness in restoring infectious bone defects was evaluatedin vivousing a rabbit model of chronic osteomyelitis. Ourin vivoresults implied that the VCM/nHAC/CSH composite performed well both in antibacterial ability and in bone regeneration. This novel bone graft substitute should be very promising for the treatment of bone defect-related infection in orthopedic surgeries.

2021 ◽  
Vol 64 (6) ◽  
pp. 26-32
Author(s):  
Elena Pavlovschi ◽  
◽  
Alina Stoian ◽  
Grigore Verega ◽  
Viorel Nacu ◽  
...  

Background: The use of bone graft has been a successful step in the treatment of a large number of diseases of the osteoarticular system. But a massive bone defect remains a dilemma for modern reconstructive surgery. Present methods used have a high level of morbidity and complication. Literature indicates the absence of an optimal solution in massive bone defects healing. The aim of this study: to perform an in vivo preliminary study of vascularization of the hind limb in the rabbit model, for obtaining a graft able for further inclusion in the host blood circulation, without immunosuppression by decellularization. Material and methods: The study was performed on the 12 laboratory rabbits. After euthanasia of the rabbit, the femoral and tibiofibular bone was collected without soft tissue, only with the vascular pedicle, and keeping the passage through the vessels. In the abdominal aorta was injected contrast material, with the subsequent preparation of the arterial vessels, succeeded by anatomical, morphological, radiography, and microangiography study of this vascularized bone segment. Results: The principal nutrient artery of the rabbit femur springs from the lateral circumflex femoral artery. The optimal segment for vascularized allografting (the rabbit model) was determined the upper third of the femur with the up to the level of the internal iliac artery. So, it could be used as a bone graft for further conservation and decellularization. Conclusions: The vascularized allogeneic bone without immunosuppression would be a perfect alternative in the treatment of the massive bone defects.


Author(s):  
Azimah Ahmad Zainol Hady ◽  
Liyana Azmi ◽  
Amira Raudhah Abdullah

Bone can heal on its own through the process known as bone remodelling. Nonetheless, a critical size bone defect will hinder the natural bone-healing process and may not allow for complete fracture healing. These requires surgical intervention by employing the use of bone tissue implants and in need of realignment and fixation for proper fracture healing. Traditional knowledge of bone injury and fracture healing must be comprehended thoroughly for a proper invention of bioengineered material or devices that could enhance the physiological process. Heretofore, engineered materials used to address critical size bone defects have encountered various challenges and improvement be it in bone grafting or choices of mechanical stabilization devices. To date, researchers have been mainly focussing on the alternative material for bone graft substitute albeit the selection of fixators to establish mechanical stabilization are as important. This review highlighted the challenges, improvement and advancement in mechanical stabilization devices and bone graft substitute with respect to the physiological process of bone fracture healing. Identifying these challenges would help assist the researcher in an expedition toward the recovery and restoration of critical size bone defects.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 999 ◽  
Author(s):  
Mengying Liu ◽  
Yonggang Lv

Bone defects caused by fracture, disease or congenital defect remains a medically important problem to be solved. Bone tissue engineering (BTE) is a promising approach by providing scaffolds to guide and support the treatment of bone defects. However, the autologous bone graft has many defects such as limited sources and long surgical procedures. Therefore, xenograft bone graft is considered as one of the best substitutions and has been effectively used in clinical practice. Due to better preserved natural bone structure, suitable mechanical properties, low immunogenicity, good osteoinductivity and osteoconductivity in natural bone graft, decellularized and demineralized bone matrix (DBM) scaffolds were selected and discussed in the present review. In vivo animal models provide a complex physiological environment for understanding and evaluating material properties and provide important reference data for clinical trials. The purpose of this review is to outline the in vivo bone regeneration and remodeling capabilities of decellularized and DBM scaffolds in bone defect models to better evaluate the potential of these two types of scaffolds in BTE. Taking into account the limitations of the state-of-the-art technology, the results of the animal bone defect model also provide important information for future design of natural bone composite scaffolds.


2001 ◽  
Vol 1 (6) ◽  
pp. 395-401 ◽  
Author(s):  
Paul A Glazer ◽  
Upshur M Spencer ◽  
Ron N Alkalay ◽  
Jeffrey Schwardt

2007 ◽  
Vol 330-332 ◽  
pp. 1165-1168
Author(s):  
Jin Feng Yao ◽  
Y.Z. Zhang ◽  
C.Y. Bao ◽  
L.Y. Sun ◽  
X.M. Hao ◽  
...  

The purpose of this study was to explore the feasibility of repairing massive bone defect with in vivo tissue engineering(TE) bone, and to provide experimental evidence for the application of in vivo TE bone into clinic in the future. Six calcium phosphate ceramics (Ca-P ceramics) columns were prepared, and then immersed in dynamic revised simulated body fluid (RSBF). 72 hours later, the bone-like apatite was formed on the surface and pore walls of ceramics. Three dogs were used in this study. Two ceramic columns were implanted bilaterally in the femoral muscles of each dog to construct living bone graft of in vivo TE bone. 6 weeks after implantation, they were transplanted to the box-like bone defects sites created in bilateral mandible of the same animals. The dogs were sacrificed at 8, 12 week after operation respectively. Samples were harvested for gross observation, X-ray examination, tetracycline fluorescence labeling, SPECT and histological observation. These results demonstrated that as a living bone graft, in vivo TE bone participated in the bone metabolism of host, and integrated with the host bone. It is feasible to reconstruct box-like bone defect of mandible with the in vivo TE bone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karen E. Beenken ◽  
Mara J. Campbell ◽  
Aura M. Ramirez ◽  
Karrar Alghazali ◽  
Christopher M. Walker ◽  
...  

AbstractWe previously reported the development of an osteogenic bone filler scaffold consisting of degradable polyurethane, hydroxyapatite, and decellularized bovine bone particles. The current study was aimed at evaluating the use of this scaffold as a means of local antibiotic delivery to prevent infection in a bone defect contaminated with Staphylococcus aureus. We evaluated two scaffold formulations with the same component ratios but differing overall porosity and surface area. Studies with vancomycin, daptomycin, and gentamicin confirmed that antibiotic uptake was concentration dependent and that increased porosity correlated with increased uptake and prolonged antibiotic release. We also demonstrate that vancomycin can be passively loaded into either formulation in sufficient concentration to prevent infection in a rabbit model of a contaminated segmental bone defect. Moreover, even in those few cases in which complete eradication was not achieved, the number of viable bacteria in the bone was significantly reduced by treatment and there was no radiographic evidence of osteomyelitis. Radiographs and microcomputed tomography (µCT) analysis from the in vivo studies also suggested that the addition of vancomycin did not have any significant effect on the scaffold itself. These results demonstrate the potential utility of our bone regeneration scaffold for local antibiotic delivery to prevent infection in contaminated bone defects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


Sign in / Sign up

Export Citation Format

Share Document