scholarly journals Model Predictive Control-Based Path-Following for Tail-Actuated Robotic Fish

Author(s):  
Maria L. Castaño ◽  
Xiaobo Tan

There has been an increasing interest in the use of autonomous underwater robots to monitor freshwater and marine environments. In particular, robots that propel and maneuver themselves like fish, often known as robotic fish, have emerged as mobile sensing platforms for aquatic environments. Highly nonlinear and often under-actuated dynamics of robotic fish present significant challenges in control of these robots. In this work, we propose a nonlinear model predictive control (NMPC) approach to path-following of a tail-actuated robotic fish that accommodates the nonlinear dynamics and actuation constraints while minimizing the control effort. Considering the cyclic nature of tail actuation, the control design is based on an averaged dynamic model, where the hydrodynamic force generated by tail beating is captured using Lighthill's large-amplitude elongated-body theory. A computationally efficient approach is developed to identify the model parameters based on the measured swimming and turning data for the robot. With the tail beat frequency fixed, the bias and amplitude of the tail oscillation are treated as physical variables to be manipulated, which are related to the control inputs via a nonlinear map. A control projection method is introduced to accommodate the sector-shaped constraints of the control inputs while minimizing the optimization complexity in solving the NMPC problem. Both simulation and experimental results support the efficacy of the proposed approach. In particular, the advantages of the control projection method are shown via comparison with alternative approaches.

Author(s):  
Maria L. Castaño ◽  
Xiaobo Tan

The increase of potential threats to the integrity of our aquatic ecosystems has caused global concerns which have led to interest in the use autonomous aquatic robots to monitor such environments. In recent years, underwater robots that propel and maneuver themselves like real fish, often called robotic fish, have emerged as mobile sensing platforms for freshwater and marine environments. These robots achieve locomotion via actively controlled fins, and actuation is often achieved via oscillatory inputs. Given these types of applications, accuracy and energy-saving in trajectory control is of importance for mission successes. In this work, we propose a nonlinear model predictive control (NMPC) approach to path following of a tail-actuated robotic fish. In this design, we use bias and amplitude of the tail-beat as the input to be determined by the NMPC. The effectiveness of the proposed approach is demonstrated via simulation.


2017 ◽  
Vol 24 (18) ◽  
pp. 4145-4159 ◽  
Author(s):  
Hai-Bo Yuan ◽  
Hong-Cheol Na ◽  
Young-Bae Kim

This paper examined system identification using grey-box model estimation and position-tracking control for an electro-hydraulic servo system (EHSS) using hybrid controller composed of proportional-integral control (PIC) and model predictive control (MPC). The nonlinear EHSS model is represented by differential equations. We identify model parameters and verify their accuracy against experimental data in MATLAB to evaluate the validity of this mathematical model. To guarantee improved performance of EHSS and precision of cylinder position, we propose a hybrid controller composed of PIC and MPC. The controller is designed using the Control Design and Simulation module in the Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW). A LabVIEW-based experimental rig is developed to apply the proposed controller in real time. Then, the validity and performance superiority of the hybrid controller were confirmed by comparing them with the MPC and PIC results. Results of real-life experiments show improved robustness and dynamic and static properties of EHSS.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2182 ◽  
Author(s):  
Alessandro Rosini ◽  
Alessandro Palmieri ◽  
Damiano Lanzarotto ◽  
Renato Procopio ◽  
Andrea Bonfiglio

The new electric power generation scenario, characterized by growing variability due to the greater presence of renewable energy sources (RES), requires more restrictive dynamic requirements for conventional power generators. Among traditional power generators, gas turbines (GTs) can regulate the output electric power faster than any other type of plant; therefore, they are of considerable interest in this context. In particular, the dynamic performance of a GT, being a highly nonlinear and complex system, strongly depends on the applied control system. Proportional–integral–derivative (PID) controllers are the current standard for GT control. However, since such controllers have limitations for various reasons, a model predictive control (MPC) was designed in this study to enhance GT performance in terms of dynamic behavior and robustness to model uncertainties. A comparison with traditional PID-based controllers and alternative model-based control approaches (feedback linearization control) found in the literature demonstrated the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document