True random number generator based on mouse movement and chaotic hash function

2009 ◽  
Vol 179 (19) ◽  
pp. 3442-3450 ◽  
Author(s):  
Qing Zhou ◽  
Xiaofeng Liao ◽  
Kwok-wo Wong ◽  
Yue Hu ◽  
Di Xiao
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Wang Xingyuan ◽  
Qin Xue ◽  
Teng Lin

We propose a novel true random number generator using mouse movement and a one-dimensional chaotic map. We utilize thex-coordinate of the mouse movement to be the length of an iteration segment of our TRNs and they-coordinate to be the initial value of this iteration segment. And, when it iterates, we perturb the parameter with the real value produced by the TRNG itself. And we find that the TRNG we proposed conquers several flaws of some former mouse-based TRNGs. At last we take experiments and test the randomness of our algorithm with the NIST statistical test suite; results illustrate that our TRNG is suitable to produce true random numbers (TRNs) on universal personal computers (PCs).


2020 ◽  
Vol 14 (7) ◽  
pp. 1001-1011
Author(s):  
Dhirendra Kumar ◽  
Rahul Anand ◽  
Sajai Vir Singh ◽  
Prasanna Kumar Misra ◽  
Ashok Srivastava ◽  
...  

2021 ◽  
pp. 2100062
Author(s):  
Kyung Seok Woo ◽  
Jaehyun Kim ◽  
Janguk Han ◽  
Jin Myung Choi ◽  
Woohyun Kim ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3330
Author(s):  
Pietro Nannipieri ◽  
Stefano Di Matteo ◽  
Luca Baldanzi ◽  
Luca Crocetti ◽  
Jacopo Belli ◽  
...  

Random numbers are widely employed in cryptography and security applications. If the generation process is weak, the whole chain of security can be compromised: these weaknesses could be exploited by an attacker to retrieve the information, breaking even the most robust implementation of a cipher. Due to their intrinsic close relationship with analogue parameters of the circuit, True Random Number Generators are usually tailored on specific silicon technology and are not easily scalable on programmable hardware, without affecting their entropy. On the other hand, programmable hardware and programmable System on Chip are gaining large adoption rate, also in security critical application, where high quality random number generation is mandatory. The work presented herein describes the design and the validation of a digital True Random Number Generator for cryptographically secure applications on Field Programmable Gate Array. After a preliminary study of literature and standards specifying requirements for random number generation, the design flow is illustrated, from specifications definition to the synthesis phase. Several solutions have been studied to assess their performances on a Field Programmable Gate Array device, with the aim to select the highest performance architecture. The proposed designs have been tested and validated, employing official test suites released by NIST standardization body, assessing the independence from the place and route and the randomness degree of the generated output. An architecture derived from the Fibonacci-Galois Ring Oscillator has been selected and synthesized on Intel Stratix IV, supporting throughput up to 400 Mbps. The achieved entropy in the best configuration is greater than 0.995.


Sign in / Sign up

Export Citation Format

Share Document