A two-stage model for period-dependent traffic signal control in a road networked system with stochastic travel demand

2019 ◽  
Vol 476 ◽  
pp. 256-273 ◽  
Author(s):  
Suh-Wen Chiou
2019 ◽  
Vol 27 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Azadeh Emami ◽  
Majid Sarvi ◽  
Saeed Asadi Bagloee

AbstractThis paper presents a novel method to estimate queue length at signalised intersections using connected vehicle (CV) data. The proposed queue length estimation method does not depend on any conventional information such as arrival flow rate and parameters pertaining to traffic signal controllers. The model is applicable for real-time applications when there are sufficient training data available to train the estimation model. To this end, we propose the idea of “k-leader CVs” to be able to predict the queue which is propagated after the communication range of dedicated short-range communication (the communication platform used in CV system). The idea of k-leader CVs could reduce the risk of communication failure which is a serious concern in CV ecosystems. Furthermore, a linear regression model is applied to weigh the importance of input variables to be used in a neural network model. Vissim traffic simulator is employed to train and evaluate the effectiveness and robustness of the model under different travel demand conditions, a varying number of CVs (i.e. CVs’ market penetration rate) as well as various traffic signal control scenarios. As it is expected, when the market penetration rate increases, the accuracy of the model enhances consequently. In a congested traffic condition (saturated flow), the proposed model is more accurate compared to the undersaturated condition with the same market penetration rates. Although the proposed method does not depend on information of the arrival pattern and traffic signal control parameters, the results of the queue length estimation are still comparable with the results of the methods that highly depend on such information. The proposed algorithm is also tested using large size data from a CV test bed (i.e. Australian Integrated Multimodal Ecosystem) currently underway in Melbourne, Australia. The simulation results show that the model can perform well irrespective of the intersection layouts, traffic signal plans and arrival patterns of vehicles. Based on the numerical results, 20% penetration rate of CVs is a critical threshold. For penetration rates below 20%, prediction algorithms fail to produce reliable outcomes.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ge

City intersection traffic signal control is an important method to improve the efficiency of road network and alleviate traffic congestion. This paper researches traffic signal fuzzy control method on a single intersection. A two-stage traffic signal control method based on traffic urgency degree is proposed according to two-stage fuzzy inference on single intersection. At the first stage, calculate traffic urgency degree for all red phases using traffic urgency evaluation module and select the red light phase with large traffic urgency as the next phase to switch. At the second stage, green delay of the current green phase is determined by fuzzy inference based on the amount of vehicles of current green phase and next green phase. The average vehicle delays are used to evaluate the performance of the fuzzy signal controller. Finally, comparisons have been made with pretimed controller and fuzzy logic controller without considering the urgency of red phase. Simulation results show the performance of our proposed method.


2011 ◽  
Vol 131 (2) ◽  
pp. 303-310
Author(s):  
Ji-Sun Shin ◽  
Cheng-You Cui ◽  
Tae-Hong Lee ◽  
Hee-hyol Lee

2021 ◽  
Vol 22 (2) ◽  
pp. 12-18 ◽  
Author(s):  
Hua Wei ◽  
Guanjie Zheng ◽  
Vikash Gayah ◽  
Zhenhui Li

Traffic signal control is an important and challenging real-world problem that has recently received a large amount of interest from both transportation and computer science communities. In this survey, we focus on investigating the recent advances in using reinforcement learning (RL) techniques to solve the traffic signal control problem. We classify the known approaches based on the RL techniques they use and provide a review of existing models with analysis on their advantages and disadvantages. Moreover, we give an overview of the simulation environments and experimental settings that have been developed to evaluate the traffic signal control methods. Finally, we explore future directions in the area of RLbased traffic signal control methods. We hope this survey could provide insights to researchers dealing with real-world applications in intelligent transportation systems


Sign in / Sign up

Export Citation Format

Share Document