Reduced-order adaptive sliding mode control for nonlinear switching semi-Markovian jump delayed systems

2019 ◽  
Vol 477 ◽  
pp. 334-348 ◽  
Author(s):  
Baoping Jiang ◽  
Hamid Reza Karimi ◽  
Yonggui Kao ◽  
Cunchen Gao
Author(s):  
Guiling Li ◽  
Chen Peng

This paper investigates the robust stabilization of the adaptive sliding mode control for a class of linear systems subjected to external disturbance via event-triggered communication (ETC) scheme. First, in order to reduce the bandwidth utilization, a discrete ETC scheme is proposed and the networked sliding mode function is derived using the ETC scheme. Based on the derived sliding mode function, a reduced-order networked sliding mode dynamics with communication delay is established. Second, by constructing a Lyapunov–Krasovskii functional (LKF), asymptotic stability and stabilization criteria of the reduced-order sliding mode dynamics are given in the form of linear matrix inequalities. According to the stabilization result, a novel event-triggered-based adaptive sliding mode controller is designed while guaranteeing the reachability of the sliding surface. Finally, simulation results illustrate the effectiveness and merit of the developed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Wafaa Jawaada ◽  
M. S. M. Noorani ◽  
M. Mossa Al-Sawalha ◽  
M. Abdul Majid

A novel reduced-order adaptive sliding mode controller is developed and experimented in this paper to antisynchronize two different chaotic systems with different order. Based upon the parameters modulation and the adaptive sliding mode control techniques, we show that dynamical evolution of third-order chaotic system can be antisynchronized with the projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to two examples: firstly Lorenz (4th-order) and Lorenz (3rd-order) and secondly the hyperchaotic Lü (4th-order) and Chen (3rd-order). Theoretical analysis and numerical simulations are shown to verify the results.


Sign in / Sign up

Export Citation Format

Share Document