Design of fuzzy system-fuzzy neural network-backstepping control for complex robot system

2021 ◽  
Vol 546 ◽  
pp. 1230-1255
Author(s):  
Kunming Zheng ◽  
Qiuju Zhang ◽  
Youmin Hu ◽  
Bo Wu
2013 ◽  
Vol 726-731 ◽  
pp. 958-962 ◽  
Author(s):  
Zhen Chun Hao ◽  
Xiao Li Liu ◽  
Qin Ju

Healthy river ecosystem has been acknowledged as the object of river management, which is crucial for the sustainable development of cities. Simple and practical evaluation methods with great precision are necessary for the evaluation of river ecosystem health. Fuzzy system has been widely used in evaluation and decision making for its simple reasoning and the adoption of experts knowledge. However, much artificial intervention decreases the precision. Neural network has a strong ability of self-leaning while it is not good at expressing rule-based knowledge. The T-S fuzzy neural network model combines the advantages of fuzzy system and neural network. In this paper, the T-S fuzzy neural network model was used to establish a river ecosystem health evaluation model. Results show that the combination of T-S fuzzy model and neural network eliminates the influences of subjective factors and improve the final precisions efficiently.


2012 ◽  
Vol 8 (8) ◽  
pp. 35-44
Author(s):  
Turki Abdalla ◽  
Basil Jasim

In this paper, high tracking performance control structure for rigid robot manipulator is proposed. PD-like Sugano type fuzzy system is used as a main controller, while fuzzy-neural network (FNN) is used as a compensator for uncertainties by minimizing suitable function. The output of FNN is added to the reference trajectories to modify input error space, so that the system robust to any change in system parameters. The proposed structure is simulated and compared with computed torque controller. The simulation study has showed the validity of our structure, also showed its superiority to computed torque controller.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xin Zhang ◽  
Longhua Mu

In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.


Sign in / Sign up

Export Citation Format

Share Document