Rumor2vec: A rumor detection framework with joint text and propagation structure representation learning

2021 ◽  
Vol 560 ◽  
pp. 137-151
Author(s):  
Kefei Tu ◽  
Chen Chen ◽  
Chunyan Hou ◽  
Jing Yuan ◽  
Jundong Li ◽  
...  
2021 ◽  
Vol 58 (5) ◽  
pp. 102678
Author(s):  
Xueqin Chen ◽  
Fan Zhou ◽  
Fengli Zhang ◽  
Marcello Bonsangue

2021 ◽  
Author(s):  
Jiamin Chen ◽  
Jianliang Gao ◽  
Tengfei Lyu ◽  
Babatounde Moctard Oloulade ◽  
Xiaohua Hu

Author(s):  
Wanshan Zheng ◽  
Zibin Zheng ◽  
Hai Wan ◽  
Chuan Chen

Representation learning and feature aggregation are usually the two key intermediate steps in natural language processing. Despite deep neural networks have shown strong performance in the text classification task, they are unable to learn adaptive structure features automatically and lack of a method for fully utilizing the extracted features. In this paper, we propose a novel architecture that dynamically routes hierarchical structure feature to attentive capsule, named HAC. Specifically, we first adopt intermediate information of a well-designed deep dilated CNN to form hierarchical structure features. Different levels of structure representations are corresponding to various linguistic units such as word, phrase and clause, respectively. Furthermore, we design a capsule module using dynamic routing and equip it with an attention mechanism. The attentive capsule implements an effective aggregation strategy for feature clustering and selection. Extensive results on eleven benchmark datasets demonstrate that the proposed model obtains competitive performance against several state-of-the-art baselines. Our code is available at https://github.com/zhengwsh/HAC.


2020 ◽  
Vol 15 (7) ◽  
pp. 750-757
Author(s):  
Jihong Wang ◽  
Yue Shi ◽  
Xiaodan Wang ◽  
Huiyou Chang

Background: At present, using computer methods to predict drug-target interactions (DTIs) is a very important step in the discovery of new drugs and drug relocation processes. The potential DTIs identified by machine learning methods can provide guidance in biochemical or clinical experiments. Objective: The goal of this article is to combine the latest network representation learning methods for drug-target prediction research, improve model prediction capabilities, and promote new drug development. Methods: We use large-scale information network embedding (LINE) method to extract network topology features of drugs, targets, diseases, etc., integrate features obtained from heterogeneous networks, construct binary classification samples, and use random forest (RF) method to predict DTIs. Results: The experiments in this paper compare the common classifiers of RF, LR, and SVM, as well as the typical network representation learning methods of LINE, Node2Vec, and DeepWalk. It can be seen that the combined method LINE-RF achieves the best results, reaching an AUC of 0.9349 and an AUPR of 0.9016. Conclusion: The learning method based on LINE network can effectively learn drugs, targets, diseases and other hidden features from the network topology. The combination of features learned through multiple networks can enhance the expression ability. RF is an effective method of supervised learning. Therefore, the Line-RF combination method is a widely applicable method.


2020 ◽  
Author(s):  
Mikołaj Morzy ◽  
Bartłomiej Balcerzak ◽  
Adam Wierzbicki ◽  
Adam Wierzbicki

BACKGROUND With the rapidly accelerating spread of dissemination of false medical information on the Web, the task of establishing the credibility of online sources of medical information becomes a pressing necessity. The sheer number of websites offering questionable medical information presented as reliable and actionable suggestions with possibly harmful effects poses an additional requirement for potential solutions, as they have to scale to the size of the problem. Machine learning is one such solution which, when properly deployed, can be an effective tool in fighting medical disinformation on the Web. OBJECTIVE We present a comprehensive framework for designing and curating of machine learning training datasets for online medical information credibility assessment. We show how the annotation process should be constructed and what pitfalls should be avoided. Our main objective is to provide researchers from medical and computer science communities with guidelines on how to construct datasets for machine learning models for various areas of medical information wars. METHODS The key component of our approach is the active annotation process. We begin by outlining the annotation protocol for the curation of high-quality training dataset, which then can be augmented and rapidly extended by employing the human-in-the-loop paradigm to machine learning training. To circumvent the cold start problem of insufficient gold standard annotations, we propose a pre-processing pipeline consisting of representation learning, clustering, and re-ranking of sentences for the acceleration of the training process and the optimization of human resources involved in the annotation. RESULTS We collect over 10 000 annotations of sentences related to selected subjects (psychiatry, cholesterol, autism, antibiotics, vaccines, steroids, birth methods, food allergy testing) for less than $7 000 employing 9 highly qualified annotators (certified medical professionals) and we release this dataset to the general public. We develop an active annotation framework for more efficient annotation of non-credible medical statements. The results of the qualitative analysis support our claims of the efficacy of the presented method. CONCLUSIONS A set of very diverse incentives is driving the widespread dissemination of medical disinformation on the Web. An effective strategy of countering this spread is to use machine learning for automatically establishing the credibility of online medical information. This, however, requires a thoughtful design of the training pipeline. In this paper we present a comprehensive framework of active annotation. In addition, we publish a large curated dataset of medical statements labelled as credible, non-credible, or neutral.


2019 ◽  
Vol 57 (7) ◽  
pp. 4360-4374 ◽  
Author(s):  
Xiaohui Wei ◽  
Wen Zhu ◽  
Bo Liao ◽  
Lijun Cai

Sign in / Sign up

Export Citation Format

Share Document