CS-DE: Cooperative Strategy based Differential Evolution with Population Diversity Enhancement

Author(s):  
Zhenyu Meng ◽  
Yuxin Zhong ◽  
Cheng Yang
2014 ◽  
Vol 4 (2) ◽  
pp. 20-39
Author(s):  
José L. Guerrero ◽  
Antonio Berlanga ◽  
José M. Molina

Diversity in evolutionary algorithms is a critical issue related to the performance obtained during the search process and strongly linked to convergence issues. The lack of the required diversity has been traditionally linked to problematic situations such as early stopping in the presence of local optima (usually faced when the number of individuals in the population is insufficient to deal with the search space). Current proposal introduces a guided mutation operator to cope with these diversity issues, introducing tracking mechanisms of the search space in order to feed the required information to this mutation operator. The objective of the proposed mutation operator is to guarantee a certain degree of coverage over the search space before the algorithm is stopped, attempting to prevent early convergence, which may be introduced by the lack of population diversity. A dynamic mechanism is included in order to determine, in execution time, the degree of application of the technique, adapting the number of cycles when the technique is applied. The results have been tested over a dataset of ten standard single objective functions with different characteristics regarding dimensionality, presence of multiple local optima, search space range and three different dimensionality values, 30D, 300D and 1000D. Thirty different runs have been performed in order to cover the effect of the introduced operator and the statistical relevance of the measured results


2022 ◽  
Vol 51 ◽  
pp. 101938
Author(s):  
Yang Yu ◽  
Kaiyu Wang ◽  
Tengfei Zhang ◽  
Yirui Wang ◽  
Chen Peng ◽  
...  

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1565 ◽  
Author(s):  
Xingping Sun ◽  
Linsheng Jiang ◽  
Yong Shen ◽  
Hongwei Kang ◽  
Qingyi Chen

Single objective optimization algorithms are the foundation of establishing more complex methods, like constrained optimization, niching and multi-objective algorithms. Therefore, improvements to single objective optimization algorithms are important because they can impact other domains as well. This paper proposes a method using turning-based mutation that is aimed to solve the problem of premature convergence of algorithms based on SHADE (Success-History based Adaptive Differential Evolution) in high dimensional search space. The proposed method is tested on the Single Objective Bound Constrained Numerical Optimization (CEC2020) benchmark sets in 5, 10, 15, and 20 dimensions for all SHADE, L-SHADE, and jSO algorithms. The effectiveness of the method is verified by population diversity measure and population clustering analysis. In addition, the new versions (Tb-SHADE, TbL-SHADE and Tb-jSO) using the proposed turning-based mutation get apparently better optimization results than the original algorithms (SHADE, L-SHADE, and jSO) as well as the advanced DISH and the jDE100 algorithms in 10, 15, and 20 dimensional functions, but only have advantages compared with the advanced j2020 algorithm in 5 dimensional functions.


Author(s):  
Roman Senkerik ◽  
Adam Viktorin ◽  
Michal Pluhacek ◽  
Tomas Kadavy

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092529
Author(s):  
Jianzhong Huang ◽  
Yuwan Cen ◽  
Nenggang Xie ◽  
Xiaohua Ye

For the inverse calculation of laser-guided demolition robot, its global nonlinear mapping model from laser measuring point to joint cylinder stroke has been set up with an artificial neural network. Due to the contradiction between population diversity and convergence rate in the optimization of complex neural networks by using differential evolution, a gravitational search algorithm and differential evolution is proposed to accelerate the convergence rate of differential evolution population driven by gravity. Gravitational search algorithm and differential evolution is applied to optimize the inverse calculation neural network mapping model of demolition robot, and the algorithm simulation shows that gravity can effectively regulate the convergence process of differential evolution population. Compared with the standard differential evolution, the convergence speed and accuracy of gravitational search algorithm and differential evolution are significantly improved, which has better optimization stability. The calculation results show that the output accuracy of this gravitational and differential evolution neural network can meet the calculation requirements of the positioning control of demolition robot’s manipulator. The optimization using gravitational search algorithm and differential evolution is done with the connection weights of a neural network in this article, and as similar techniques can be applied to the other hyperparameter optimization problem. Moreover, such an inverse calculation method can provide a reference for the autonomous positioning of large hydraulic series manipulator, so as to improve the robotization level of construction machinery.


2021 ◽  
Author(s):  
Joao Claudio Chamma Carvalho ◽  
Kalef Levy de Lima Pinto ◽  
Roberto Celio Limão Oliveira

This paper presents a study about some aspects of the influence of population diversity on the performance of the Differential Evolution technique. In order to accomplish this, the referred algorithm is tested with different benchmark functions widely used in the literature, and the performance results are analyzed and discussed by associating changes in the population diversity with changes in the evolution of the best solution over the generations. The objective of this work is to investigate the pattern of diversity behavior throughout the optimization process through graphs results and, then, evaluate how sensitive is the technique performance when associated with the population diversity behavior. This work can assist the implementation of new operators and strategies, which will permit the Differential Evolution technique to have a better performance.


Sign in / Sign up

Export Citation Format

Share Document