Synthesis and characterization and pelletization pressure effect on the properties of Bi1.7Pb0.3Sr2W0.2 Ca2Cu3 O10+δ superconductor system

2020 ◽  
Vol 127 ◽  
pp. 106967
Author(s):  
Ali Razzaq Abdulridha ◽  
Ehssan Al-Bermany ◽  
Fouad Sh Hashim ◽  
Adel H. Omran Alkhayatt
1996 ◽  
Vol 61 (10) ◽  
pp. 3572-3572
Author(s):  
Lawrence T. Scott ◽  
Atena Necula

1995 ◽  
Vol 05 (C8) ◽  
pp. C8-729-C8-734
Author(s):  
A.I. Lotkov ◽  
V.P. Lapshin ◽  
V.A. Goncharova ◽  
H.V Chernysheva ◽  
V.N. Grishkov ◽  
...  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-275-C8-276
Author(s):  
H. Yoshida ◽  
T. Komatsu ◽  
T. Kaneko ◽  
S. Abe ◽  
K. Kamigaki

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1281-C8-1282
Author(s):  
H. Tange ◽  
Y. Tanaka ◽  
K. Shirakawa

2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


Sign in / Sign up

Export Citation Format

Share Document