Investigation of the immunosuppressive activity of Physalin H on T lymphocytes

2010 ◽  
Vol 10 (3) ◽  
pp. 290-297 ◽  
Author(s):  
Youjun Yu ◽  
Lijuan Sun ◽  
Lei Ma ◽  
Jiyu Li ◽  
Lihong Hu ◽  
...  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


2014 ◽  
Vol 36 (4) ◽  
pp. 290-296 ◽  
Author(s):  
Shuang Guan ◽  
Baochen Fang ◽  
Bocui Song ◽  
Ying Xiong ◽  
Jing Lu

2022 ◽  
Vol 103 ◽  
pp. 108448
Author(s):  
Seema Devi ◽  
Amy M. Zimmermann-Klemd ◽  
Bernd L. Fiebich ◽  
Michael Heinrich ◽  
Carsten Gründemann ◽  
...  

2012 ◽  
Vol 27 (7) ◽  
pp. 980-985 ◽  
Author(s):  
Na Wei ◽  
Tan Li ◽  
Hong Chen ◽  
Xin Mei ◽  
Bo Cao ◽  
...  

1985 ◽  
Vol 68 (12) ◽  
pp. 3312-3317 ◽  
Author(s):  
H.A. Fahmi ◽  
A.G. Hunter ◽  
R.J.F. Markham ◽  
B.E. Seguin

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1097-1097
Author(s):  
Clemence Roux ◽  
Gaelle Saviane ◽  
Gihen Dhib ◽  
Jonathan Pini ◽  
Pierre-Simon Rohrlich ◽  
...  

Abstract Background One major problem of allogeneic hematopoietic stem cell transplantation (HSCT) is acute Graft versus Host Disease (aGVHD). aGVHD has been managed until now with HLA matching and a constant evolving repertoire of immunosuppressive drugs. One alternative would be to generate in the host a permanent tolerance state toward the graft. Tolerant inducing cell therapy has been proposed with adult mesenchymal stromal (MSCs) cells. Ex vivo isolated somatic MSCs have been implicated in immunoregulatory functions on cells from both the innate and adaptive immune system. They were proposed for cell therapies for the treatment of aGVHD, Nevertheless, their use is restricted because of the few number that can be recovered from adult tissues, their limited in vitro expansion, and the absence of a full phenotypic characterization. Therefore other sources of well-defined and unlimited number of MSCs are needed, and MSCs derived in vitro from human Induced pluripotent stem cell (huIPS) would be a valuable tool for therapeutic approaches. Aims Because of our expertise in pluripotent stem cell differentiation, we generated huiPS-MSCs that present a strong immunosuppressive activity on allogeneic T cell responses. Our objectives are: 1/ To evaluate and characterize in vitro this immunosuppression. 2/ To validate in vivo these results using a xenoGVHD model. Methods To characterize the huIPS-MSCs in vitro, FACS phenotyping and multipotency were tested. Their immunogenicity in vitro was monitored in co-cultures with allogenic peripheral blood mononuclear cells (PBMC). The in vivo immunosuppressive activity of huiPS-MSCs was evaluated using a xenoGVHD model in immunodeficient NSG (NOD/SCID/IL2rγKO) mice in which human PBMC were injected intra-peritonally. We established 3 groups : 1) huIPS-MSCs (control) 2) PBMC 3) PBMC + IPS-MSCs. We repeated huIPS-MSCs injection weekly with median number of injection n=3 (range 2-3). The activation state of human allogeneic T lymphocytes recovered from mice between 5 to 8 weeks after initial injection was evaluated and indicated the level of the xenoGVHD process and the efficiency of huiPS-MSCs to prevent it. Results a) In vitro characterization of huIPS-MSCs As expected, the huiPS-MSCs were positive for CD73, CD90, CD105, HLA-I Ags and negative for CD45, CD34, HLA-II Ags and they were capable of differentiation into the classical mesenchymal-derived cells (osteoblast, chondrocytes and adipocytes). To test their immunosuppressive properties, we analyzed their action on the proliferation of human T lymphocytes stimulated in an allogeneic manner (Fig 1). The stimulation of PBMC in mixed lymphocyte reaction resulted in CD4 and CD8 T cell proliferation (28 ± 7% and 47 ± 8%, respectively), which was significantly reduced in co-culture with huiPS-MSCs (4 ± 2% and 10 ± 2, respectively, n=3 p<0,05). We were able to demonstrate using blocking antibodies that part of the inhibition exerted by the iPS-MSCs is due to a) B7H1, a membrane receptor for the B7 family, known for its inhibitory action on the activation of T lymphocytes b) and B7H3 (from the same family) whose role remains controversial. b) In vivo characterization of huIPS-MSCs After sacrifice of mice, human circulating cells, those present in the peritoneal cavity and in the spleen were analysed by FACS. Mostly T lymphocytes were detected, and their number was significantly reduced in mice treated with huIPS-MSCs p<0,05 (Fig 2). Intracytoplasmic labelling of recovered T cells showed that untreated mice displayed high percentages of human differentiated T cells producing IFN  and TNF  (typical of a inflammatory Th1 cytokine polarization profile), while little or none produced low inflammatory (IL-4) or anti-inflammatory (IL-10) cytokines. In contrast, in mice treated with the huiPS-MSCs, the proportion of T cells of the Th1 type was substantially reduced, while that of T cells producing IL-4 and / or IL-10 was slightly increased (Fig 3). In parallel, T cells expressing FoxP3 appeared . Conclusion We were able to generate immune-modulatory huiPS-MSCs that can be used to reduce activation of T cells in a xeno-aGVHD model through a switch from a Th1 inflammatory differentiation pathway to a T cell regulatory pathway. Our results may favor the development of new tools and strategies based on the use of pluripotent stem cells and their derivatives to prevent aGVHD but also for the induction of specific tolerance. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.


2000 ◽  
Vol 111 (1) ◽  
pp. 230-238 ◽  
Author(s):  
Mohammad Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hodjattallah Rabbani ◽  
Ulla Ruden ◽  
Lennart Hammarstrom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document