contact hypersensitivity
Recently Published Documents


TOTAL DOCUMENTS

1202
(FIVE YEARS 99)

H-INDEX

81
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Dylan Scott Eiger ◽  
Noelia Boldizsar ◽  
Christopher Cole Honeycutt ◽  
Julia Gardner ◽  
Stephen Kirchner ◽  
...  

Some G protein-coupled receptor (GPCR) ligands act as biased agonists which preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the chemokine GPCR CXCR3. The signaling profile of CXCR3 changed as it trafficked from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling was critical for biased activation of G proteins, β-arrestins, and ERK1/2. In CD8+ T cells, the chemokines promoted unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation was dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.


Author(s):  
Takahiro Nagatake ◽  
Shigenobu Kishino ◽  
Emiko Urano ◽  
Haruka Murakami ◽  
Nahoko Kitamura ◽  
...  

AbstractDietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body’s use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


2022 ◽  
Vol 23 (1) ◽  
pp. 516
Author(s):  
Meilang Xue ◽  
Haiyan Lin ◽  
Ruilong Zhao ◽  
Callum Fryer ◽  
Lyn March ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with excessive inflammation and defective skin barrier function. Activated protein C (APC) is a natural anticoagulant with anti-inflammatory and barrier protective functions. However, the effect of APC on AD and its engagement with protease activated receptor (PAR)1 and PAR2 are unknown. Methods: Contact hypersensitivity (CHS), a model for human AD, was induced in PAR1 knockout (KO), PAR2KO and matched wild type (WT) mice using 2,4-dinitrofluorobenzene (DNFB). Recombinant human APC was administered into these mice as preventative or therapeutic treatment. The effect of APC and PAR1KO or PARKO on CHS was assessed via measurement of ear thickness, skin histologic changes, inflammatory cytokine levels, Th cell phenotypes and keratinocyte function. Results: Compared to WT, PAR2KO but not PAR1KO mice displayed less severe CHS when assessed by ear thickness; PAR1KO CHS skin had less mast cells, lower levels of IFN-γ, IL-4, IL-17 and IL-22, and higher levels of IL-1β, IL-6 and TGF-β1, whereas PAR2KO CHS skin only contained lower levels of IL-22 and IgE. Both PAR1KO and PAR2KO spleen cells had less Th1/Th17/Th22/Treg cells. In normal skin, PAR1 was present at the stratum granulosum and spinosum, whereas PAR2 at the upper layers of the epidermis. In CHS, however, the expression of PAR1 and PAR2 were increased and spread to the whole epidermis. In vitro, compared to WT cells, PAR1KO keratinocytes grew much slower, had a lower survival rate and higher para permeability, while PAR2KO cells grew faster, were resistant to apoptosis and para permeability. APC inhibited CHS as a therapeutic but not as a preventative treatment only in WT and PAR1KO mice. APC therapy reduced skin inflammation, suppressed epidermal PAR2 expression, promoted keratinocyte growth, survival, and barrier function in both WT and PAR1KO cells, but not in PAR2KO cells. Conclusions: APC therapy can mitigate CHS. Although APC acts through both PAR1 and PAR2 to regulate Th and mast cells, suppression of clinical disease in mice is achieved mainly via inhibition of PAR2 alone. Thus, APC may confer broad therapeutic benefits as a disease-modifying treatment for AD.


2021 ◽  
Vol 23 (1) ◽  
pp. 74
Author(s):  
Paweł Bryniarski ◽  
Katarzyna Nazimek ◽  
Janusz Marcinkiewicz

Hypertension is a chronic disease associated with chronic inflammation involving activated macrophages. Antihypertensive drugs (for example, angiotensin-converting enzyme inhibitors—ACEIs) used in the treatment of hypertension have immunomodulatory properties. On the other hand, the immunological effect of diuretics and combined drugs (diuretics + ACEI) is unclear. Therefore, we examined the influence of diuretics and combination drugs (ACEI + diuretic) on cellular response (contact hypersensitivity), production of reactive oxygen intermediates (ROIs), and nitric oxide (NO), and the secretion of interleukin-12 (IL-12). CBA mice were administered i.p. captopril (5 mg/kg) with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) for 8 days. On the third day, the mice were administered i.p. mineral oil, and macrophages were collected 5 days later. In the presented results, we show that diuretics administered alone or with captopril increase the generation of ROIs and reduce the formation of NO by macrophages. Moreover, tested drugs inhibit the secretion of IL-12. Diuretics and combined drugs reduce the activity of contact hypersensitivity (both activation and induction phases). Our research shows that the tested drugs modulate the cellular response by influencing the function of macrophages, which is important in assessing the safety of antihypertensive therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mubin Tarannum ◽  
Rizwan Romee

AbstractNatural killer cells are an important part of the innate immune system mediating robust responses to virus-infected and malignant cells without needing prior antigen priming. NK cells have always been thought to be short-lived and with no antigen specificity; however, recent data support the presence of NK cell memory including in the hapten-specific contact hypersensitivity model and in certain viral infections. The memory-like features can also be generated by short-term activation of both murine and human NK cells with cytokine combination of IL-12, IL-15 and IL-18, imparting increased longevity and enhanced anticancer functionality. Preclinical studies and very early clinical trials demonstrate safety and very promising clinical activity of these cytokine-induced memory-like (CIML) NK cells, making them an attractive cell type for developing novel adoptive cellular immunotherapy strategies. Furthermore, efforts are on to arm them with novel gene constructs for enhanced tumor targeting and function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Malarvizhi Gurusamy ◽  
Denise Tischner ◽  
Jingchen Shao ◽  
Stephan Klatt ◽  
Sven Zukunft ◽  
...  

AbstractG-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3074
Author(s):  
Zhengwang Sun ◽  
Ravi Vattepu ◽  
Songfa Zhang

As the outermost barrier, skin plays an important role in protecting our bodies against outside invasion. Under stable conditions or during inflammation, leukocytes migration is essential for restoring homeostasis in the skin. Immune cells trafficking is orchestrated by chemokines; leukocytes express receptors that bind to chemokines and trigger migration. The homeostasis of the immune ecosystem is an extremely complicated dynamic process that requires the cooperation of innate and adaptive immune cells. Emerging studies have been shedding a light on the unique characteristics of skin-resident innate lymphoid cells (ILCs). In this review, we discuss how chemokines orchestrate skin ILCs trafficking and contribute to tissue homeostasis and how abnormal chemokine–chemokine receptor interactions contribute to and augment skin inflammation, as seen in conditions such as contact hypersensitivity, atopic dermatitis, and psoriasis.


Author(s):  
Manami Tanaka ◽  
Chie Kohchi ◽  
Hiroyuki Inagawa ◽  
Takeshi Ikemoto ◽  
Mariko Hara-Chikuma

2021 ◽  
Author(s):  
Yan Liu ◽  
Yutong Liu ◽  
Claire Narang ◽  
Nathachit Limjunyawong ◽  
Hanna Jamaldeen ◽  
...  

Abstract Background: Chronic pruritus is a prominent symptom of allergic contact dermatitis (ACD) and represent a huge unmet health problem. However, its underlying cellular and molecular mechanisms remain largely unexplored. TRPC3 is highly expressed in primary sensory neurons and has been implicated in peripheral sensitization induced by proinflammatory mediators. However, the role of TRPC3 in acute and chronic itch is still not well defined. Methods: RNAscope in situ hybridization and immunohistochemical staining were performed on mouse trigeminal ganglion (TG) neurons. Fura-2 calcium imaging was used to characterize the function of TRPC3 in dissociated TG neurons. In native mice, the TRPC3 agonist and pruritogens were subcutaneously injected to the cheek and nape of the neck of mice, respectively. Site directed scratching and/or wiping behaviors were video recorded. Contact hypersensitivity (CHS) model was induced in mouse ears by topical application of SADBE or DNCB. Spontaneous scratching behaviors were recorded by video monitoring. Global and conditional Trpc3 knockout mice were employed to determine the contribution of TRPC3 to acute and chronic itch. The mRNA expression levels of Trpc3 and proinflammatory cytokines were assayed by quantitative real-time PCR. H&E. staining was used for the evaluation of the thickness of mouse ears. Flow cytometry was performed to assess immune cell infiltration in mouse ear tissues. Results: Among mouse TG neurons, RNAscope assay revealed that Trpc3 mRNA was predominantly expressed in nonpeptidergic small diameter neurons. Moreover, Trpc3 mRNA signal was present in the majority of itch sensing neurons. TRPC3 agonism induced TG neuronal activation and acute nonhistaminergic itch- and pain-like behaviors in naïve mice. In addition, genetic deletion of Trpc3 attenuated acute itch evoked by certain common nonhistaminergic pruritogens, including endothelin-1 and SLIGRL-NH2. In a murine model of CHS, Trpc3 mRNA expression level and function were upregulated in the TG following CHS. Pharmacological inhibition and global knockout of Trpc3 significantly alleviated spontaneous scratching behaviors without affecting concurrent cutaneous inflammation in the CHS model. Furthermore, conditional deletion of Trpc3 in primary sensory neurons but not in keratinocytes produced similar antipruritic effects in this model. Conclusions: These findings suggest that TRPC3 expressed in primary sensory neurons may contribute to acute and chronic itch via a histamine independent mechanism and that targeting neuronal TRPC3 might benefit the treatment of chronic itch associated with ACD and other inflammatory skin disorders.


Author(s):  
Atsushi Tsuge ◽  
Sho Yonekura ◽  
Satomi Watanabe ◽  
Yuta Kurosaki ◽  
Shinsuke Hisaka ◽  
...  

<b><i>Background:</i></b> Juzentaihoto (JTT) is a Kampo prescription that has been used clinically for treating skin diseases such as atopic dermatitis in Japan. We have previously studied the anti-allergic effects of JTT on 2,4,6-trinitrochlorobenzene (TNCB)-induced contact hypersensitivity (CHS) in mice and demonstrated that it significantly suppresses ear swelling in a dose-dependent manner. However, the mechanism underlying the anti-allergic actions of JTT is obscure. <b><i>Methods:</i></b> We investigated the mechanism underlying the anti-allergic effects of JTT using a TNCB-induced murine CHS model and adoptive cell transfer experiments. <b><i>Results:</i></b> We showed that the anti-allergic effects of JTT are due to inhibition of effector T-cell activation and induction and/or activation of regulatory T cells. Furthermore, ex vivo experiments confirmed the effect of JTT on the activation of effector T cells and regulatory T cells, as interferon-γ production decreased, whereas interleukin (IL)-10 production increased, in the cultured lymphocytes obtained from 5% TNCB-sensitized mice treated with anti-CD3ε and anti-CD28 monoclonal antibodies. Flow cytometry showed that the CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup>, CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>−</sup>, and CD8<sup>+</sup>CD122<sup>+</sup> cell population increased after oral administration of JTT. Finally, the anti-allergic effect of JTT by inducing and/or activating regulatory T cells (Tregs) was confirmed to be mediated by IL-10 through in vivo neutralization experiments with anti-IL-10 monoclonal antibodies. <b><i>Conclusion:</i></b> We suggested that JTT exerts anti-allergic effects by regulating the activation of effector T cells and Tregs involved in murine CHS model.


Sign in / Sign up

Export Citation Format

Share Document