Resolvin D1 ameliorates hepatic steatosis by remodeling the gut microbiota and restoring the intestinal barrier integrity in DSS-induced chronic colitis

2022 ◽  
Vol 103 ◽  
pp. 108500
Author(s):  
Cui Zeng ◽  
Xinghuang Liu ◽  
Siran Zhu ◽  
Danping Xiong ◽  
Liangru Zhu ◽  
...  
Life Sciences ◽  
2020 ◽  
Vol 261 ◽  
pp. 118473
Author(s):  
Lingli Wang ◽  
Jing An ◽  
Shuangning Song ◽  
Minhui Mei ◽  
Wenhua Li ◽  
...  

2019 ◽  
Vol 127 (4) ◽  
pp. 1192-1206 ◽  
Author(s):  
H.A.G. Ducray ◽  
L. Globa ◽  
O. Pustovyy ◽  
E. Morrison ◽  
V. Vodyanoy ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Ruifang Li ◽  
Yurong Yao ◽  
Pengfei Gao ◽  
Shurui Bu

Structural disruption of gut microbiota is closely related to the occurrence of non-alcoholic fatty liver disease (NAFLD). Previous research has demonstrated that both curcumin (CUR) and metformin (MET) have a therapeutic effect against NAFLD and play a role in modulating the gut microbiota. However, there is a lack of direct comparison between the two medications in terms of the therapeutic efficacy and the regulatory effect on gut microbiota. In this study, we administered either CUR or MET to rats with high-fat diet (HFD)-induced obesity to observe changes in body parameters, biochemical parameters, liver, and ileum pathology and gut microbiota, and used next generation sequencing and multivariate analysis to evaluate the structural changes of gut microbiota in a NAFLD rat model before and after CUR and MET intervention. It was found that both CUR and MET attenuated hepatic ectopic fat deposition, alleviated inflammatory factors, and improved intestinal barrier integrity in HFD-fed rats. More importantly, CUR and MET reduced the Firmicutes/Bacteroidetes ratio and reverted the composition of the HFD-disrupted gut microbiota. Both CUR and MET treatments effectively modified the gut microbiome, enriched the abundance of beneficial bacteria and reduced opportunistic pathogens in obese rats. The abundance of Butyricicoccus was increased while the abundance of Dorea was decreased in HFD + CUR group. Besides, some beneficial bacteria such as Prevotella were increased in MET-treated animals. Spearman’s correlation analysis showed that Helicobacter, Akkermansia, Desulfovibrio, Romboutsia, Corynebacterium, Lactobacillus, Ruminococcaceae_unclassified, Lachnospiraceae_unclassified, and Clostridiales_unclassified showed significantly positive correlations with TG, TC, LDL-C, GLU, IL-6, IL-1β, and TNF-α, and negative correlations with HDL-C (both p < 0.05). However, Prevotella and Stomatobaculum showed an opposite trend. In summary, CUR and MET showed similar effects in alleviating hepatic steatosis, improving intestinal barrier integrity and modulating gut microbiota in HFD-induced obesity rats, and therefore may prove to be a novel adjunctive therapy for NAFLD.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Paolillo ◽  
N Boccella ◽  
L Coretti ◽  
S D'Apice ◽  
A Lama ◽  
...  

Abstract Background Microbiota composition plays an important role in the pathophysiology of heart failure (HF). Reduced cardiac output can disrupt intestinal barrier function and promote systemic inflammation through bacterial translocation. Several gut and cardiac pathological conditions are reciprocally linked at multiple levels and through different, still largely undefined mechanisms. Purpose We analyzed the effects of Transverse aortic constriction (TAC) on aortic pressures, gut barrier integrity, systemic inflammation and gut microbiota composition. Methods TAC was induced in C57BL6 mice of either sex. Sham-operated (Sham) mice were used as controls. After one-week (1w) and four weeks (4w), mice have been anesthetized, cardiac function and abdominal aortic blood flow were analyzed. Colon, serum and feces samples were collected after sacrifice. Intestinal barrier integrity was evaluated in colon samples by Tight junction protein ZO-1 (Tjp1) and Occludin (Ocln) mRNA analysis. Circulating levels of Tumor Necrosis Factor-alpha (TNF-alpha), Lipopolysaccharide (LPS), Interleukin-10 and Interleukin-1 were measured. Microbial DNA was extracted from feces samples and gut microbiota composition was evaluated by Illumina Mi-Seq analysis. Results TAC induced left ventricular hypertrophy and systolic dysfunction. Abdominal aortic blood flow was significantly reduced in TAC mice compared to sham (Figure 1A). Decreased intestinal perfusion in TAC mice was associated to a prompt and strong weakening of intestinal barrier integrity and long-lasting decrease of colonic anti-inflammatory cytokine levels, as shown by reduced mRNA expression of interleukin-10 (IL-10) and Occludin (Ocln) (Figure 1B). Serum levels of lipopolysaccharide (LPS) were increased after TAC surgery and significant increases of circulating proinflammatory cytokines tumor necrosis factor-a (TNF-a) were detected in TAC mice (Figure 1C). High-resolution approach was used to obtain bacterial species assignment of key genera with significant differences among groups. After TAC, significant increases of Bifidobacterium, Lactobacillus and Turicibacter, whereas the genus Oscillospira was significantly less (Figure 1D). Butyrate-producing bacteria are considered relevant colonizers of the gastrointestinal tract being butyrate important in anti-inflammation and maintaining intestinal barrier integrity. Oscillospira genus members have been described as butyrate producers. Notably, in old patients with heart failure and in animal models of hypertension, increase in lactate-producing Lactobacillus was found. Conclusions These data indicate a remodeling of specific bacterial species abundance within identified key genera starting soon after TAC, designating a clear effect of the treatment on microbiota profiles and, possibly, on microbiota functionality. Gut dysbiosis may represent an element to be considered in the development or progression of cardiac dysfunction. Figure 1 Funding Acknowledgement Type of funding source: Other. Main funding source(s): CP was supported by Ministero dell'Istruzione, Università e Ricerca Scientifica grant (2015583WMX) and Programma STAR grant by Federico II University and Compagnia di San Paolo. RP was supported by a research grant provided by the Cardiopath PhD program. LC was supported by 2018-2019 Postdoctoral Fellowship Grants provided by Fondazione Umberto Veronesi.


Sign in / Sign up

Export Citation Format

Share Document