intestinal barrier integrity
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 61)

H-INDEX

21
(FIVE YEARS 4)

Nutrients ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 227
Author(s):  
Napapan Kangwan ◽  
Sarawut Kongkarnka ◽  
Nitsara Boonkerd ◽  
Kridsada Unban ◽  
Kalidas Shetty ◽  
...  

This study aimed to investigate the protective effect of probiotics and synbiotics from traditional Thai fermented tea leaves (Miang) on dextran sulfate sodium (DSS)-induced colitis in mice, in comparison to sulfasalazine. C57BL/6 mice were treated with probiotics L. pentosus A14-6, CMY46 and synbiotics, L. pentosus A14-6 combined with XOS, and L. pentosus CMY46 combined with GOS for 21 days. Colitis was induced with 2% DSS administration for seven days during the last seven days of the experimental period. The positive group was treated with sulfasalazine. At the end of the experiment, clinical symptoms, pathohistological changes, intestinal barrier integrity, and inflammatory markers were analyzed. The probiotics and synbiotics from Miang ameliorated DSS-induced colitis by protecting body weight loss, decreasing disease activity index, restoring the colon length, and reducing pathohistological damages. Furthermore, treatment with probiotics and synbiotics improved intestinal barrier integrity, accompanied by lowing colonic and systemic inflammation. In addition, synbiotics CMY46 combined with GOS remarkedly elevated the expression of IL-10. These results suggested that synbiotics isolated from Miang had more effectiveness than sulfasalazine. Thereby, they could represent a novel potential natural agent against colonic inflammation.


2021 ◽  
Vol 27 (48) ◽  
pp. 8323-8342
Author(s):  
Yuki Fujimoto ◽  
Kosuke Kaji ◽  
Norihisa Nishimura ◽  
Masahide Enomoto ◽  
Koji Murata ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10651
Author(s):  
Jessica A. Canter ◽  
Sarah E. Ernst ◽  
Kristin M. Peters ◽  
Bradley A. Carlson ◽  
Noelle R. J. Thielman ◽  
...  

Selenoproteins play important roles in many cellular functions and biochemical pathways in mammals. Our previous study showed that the deficiency of the 15 kDa selenoprotein (Selenof) significantly reduced the formation of aberrant crypt foci (ACF) in a mouse model of azoxymethane (AOM)-induced colon carcinogenesis. The objective of this study was to examine the effects of Selenof on inflammatory tumorigenesis, and whether dietary selenium modified these effects. For 20 weeks post-weaning, Selenof-knockout (KO) mice and littermate controls were fed diets that were either deficient, adequate or high in sodium selenite. Colon tumors were induced with AOM and dextran sulfate sodium. Surprisingly, KO mice had drastically fewer ACF but developed a similar number of tumors as their littermate controls. Expression of genes important in inflammatory colorectal cancer and those relevant to epithelial barrier function was assessed, in addition to structural differences via tissue histology. Our findings point to Selenof’s potential role in intestinal barrier integrity and structural changes in glandular and mucin-producing goblet cells in the mucosa and submucosa, which may determine the type of tumor developing.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 573
Author(s):  
Ping-Hsun Lu ◽  
Min-Chien Yu ◽  
Meng-Jiun Wei ◽  
Ko-Lin Kuo

Uremic toxins (UTs) are mainly produced by protein metabolized by the intestinal microbiota and converted in the liver or by mitochondria or other enzymes. The accumulation of UTs can damage the intestinal barrier integrity and cause vascular damage and progressive kidney damage. Together, these factors lead to metabolic imbalances, which in turn increase oxidative stress and inflammation and then produce uremia that affects many organs and causes diseases including renal fibrosis, vascular disease, and renal osteodystrophy. This article is based on the theory of the intestinal–renal axis, from bench to bedside, and it discusses nonextracorporeal therapies for UTs, which are classified into three categories: medication, diet and supplement therapy, and complementary and alternative medicine (CAM) and other therapies. The effects of medications such as AST-120 and meclofenamate are described. Diet and supplement therapies include plant-based diet, very low-protein diet, probiotics, prebiotics, synbiotics, and nutraceuticals. The research status of Chinese herbal medicine is discussed for CAM and other therapies. This review can provide some treatment recommendations for the reduction of UTs in patients with chronic kidney disease.


2021 ◽  
Vol 22 (14) ◽  
pp. 7613
Author(s):  
Haruki Usuda ◽  
Takayuki Okamoto ◽  
Koichiro Wada

Intestinal tract is the boundary that prevents harmful molecules from invading into the mucosal tissue, followed by systemic circulation. Intestinal permeability is an index for intestinal barrier integrity. Intestinal permeability has been shown to increase in various diseases—not only intestinal inflammatory diseases, but also systemic diseases, including diabetes, chronic kidney dysfunction, cancer, and cardiovascular diseases. Chronic increase of intestinal permeability is termed ‘leaky gut’ which is observed in the patients and animal models of these diseases. This state often correlates with the disease state. In addition, recent studies have revealed that gut microbiota affects intestinal and systemic heath conditions via their metabolite, especially short-chain fatty acids and lipopolysaccharides, which can trigger leaky gut. The etiology of leaky gut is still unknown; however, recent studies have uncovered exogenous factors that can modulate intestinal permeability. Nutrients are closely related to intestinal health and permeability that are actively investigated as a hot topic of scientific research. Here, we will review the effect of nutrients on intestinal permeability and microbiome for a better understanding of leaky gut and a possible mechanism of increase in intestinal permeability.


Sign in / Sign up

Export Citation Format

Share Document