Gaussian Dropout Based Stacked Ensemble CNN for Classification of Breast Tumor in Ultrasound Images

IRBM ◽  
2021 ◽  
Author(s):  
R. Karthik ◽  
R. Menaka ◽  
G.S. Kathiresan ◽  
M. Anirudh ◽  
M. Nagharjun
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mengwan Wei ◽  
Yongzhao Du ◽  
Xiuming Wu ◽  
Qichen Su ◽  
Jianqing Zhu ◽  
...  

The classification of benign and malignant based on ultrasound images is of great value because breast cancer is an enormous threat to women’s health worldwide. Although both texture and morphological features are crucial representations of ultrasound breast tumor images, their straightforward combination brings little effect for improving the classification of benign and malignant since high-dimensional texture features are too aggressive so that drown out the effect of low-dimensional morphological features. For that, an efficient texture and morphological feature combing method is proposed to improve the classification of benign and malignant. Firstly, both texture (i.e., local binary patterns (LBP), histogram of oriented gradients (HOG), and gray-level co-occurrence matrixes (GLCM)) and morphological (i.e., shape complexities) features of breast ultrasound images are extracted. Secondly, a support vector machine (SVM) classifier working on texture features is trained, and a naive Bayes (NB) classifier acting on morphological features is designed, in order to exert the discriminative power of texture features and morphological features, respectively. Thirdly, the classification scores of the two classifiers (i.e., SVM and NB) are weighted fused to obtain the final classification result. The low-dimensional nonparameterized NB classifier is effectively control the parameter complexity of the entire classification system combine with the high-dimensional parametric SVM classifier. Consequently, texture and morphological features are efficiently combined. Comprehensive experimental analyses are presented, and the proposed method obtains a 91.11% accuracy, a 94.34% sensitivity, and an 86.49% specificity, which outperforms many related benign and malignant breast tumor classification methods.


2009 ◽  
Vol 3 (1) ◽  
pp. 81-93 ◽  
Author(s):  
Hsieh-Wei Lee ◽  
Bin-Da Liu ◽  
King-Chu Hung ◽  
Sheau-Fang Lei ◽  
Po-Chin Wang ◽  
...  

2021 ◽  
Author(s):  
He Ma ◽  
Ronghui Tian ◽  
Hong Li ◽  
Hang Sun ◽  
Guoxiu Lu ◽  
...  

Abstract Background: The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high-efficiency features, which helps to improve the level of computer-aided diagnosis (CAD). It can improve the performance of distinguishing benign and malignant breast ultrasound (BUS) tumor images and makes rapid breast tumor screening possible. Results: The classification model was evaluated by using BUS tumor images without training. Evaluation indicators include accuracy, sensitivity, specificity, and Area Under Curve (AUC) value. The results in the Fus2Net model had an accuracy of 92%, the sensitivity reached 95.65%, the specificity reached 88.89%, and the AUC value reached 0.97 for classifying BUS tumor images. Conclusions: The experiment compared the existing CNN categorized architecture, and the Fus2Net architecture we customed has more advantages in a comprehensive performance. The obtained results demonstrated that the Fus2Net classification method we proposed can better assist radiologists in the diagnosis of benign and malignant BUS tumor images. Methods: The existing public datasets are small and the amount of data suffer from the balance issue. In this paper, we provide a relatively larger dataset with a total of 1052 ultrasound images, including 696 benign images and 356 malignant images, which were collected from a local hospital. We proposed a novel CNN named Fus2Net for the benign and malignant classification of BUS tumor images and it contains two self-designed feature extraction modules. To evaluate how the classifier generalizes on the experimental dataset, 10-fold cross validation was employed. Meanwhile, to solve the balance of the dataset, the training data was augmented before being fed into the Fus2Net. In the experiment, we used hyperparameter fine-tuning and regularization technology to make the Fus2Net convergence.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
He Ma ◽  
Ronghui Tian ◽  
Hong Li ◽  
Hang Sun ◽  
Guoxiu Lu ◽  
...  

Abstract Background The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high efficiency features, which helps to improve the level of computer-aided diagnosis (CAD). It can improve the performance of distinguishing benign and malignant breast ultrasound (BUS) tumor images, making rapid breast tumor screening possible. Results The classification model was evaluated with a different dataset of 100 BUS tumor images (50 benign cases and 50 malignant cases), which was not used in network training. Evaluation indicators include accuracy, sensitivity, specificity, and area under curve (AUC) value. The results in the Fus2Net model had an accuracy of 92%, the sensitivity reached 95.65%, the specificity reached 88.89%, and the AUC value reached 0.97 for classifying BUS tumor images. Conclusions The experiment compared the existing CNN-categorized architecture, and the Fus2Net architecture we customed has more advantages in a comprehensive performance. The obtained results demonstrated that the Fus2Net classification method we proposed can better assist radiologists in the diagnosis of benign and malignant BUS tumor images. Methods The existing public datasets are small and the amount of data suffer from the balance issue. In this paper, we provide a relatively larger dataset with a total of 1052 ultrasound images, including 696 benign images and 356 malignant images, which were collected from a local hospital. We proposed a novel CNN named Fus2Net for the benign and malignant classification of BUS tumor images and it contains two self-designed feature extraction modules. To evaluate how the classifier generalizes on the experimental dataset, we employed the training set (646 benign cases and 306 malignant cases) for tenfold cross-validation. Meanwhile, to solve the balance of the dataset, the training data were augmented before being fed into the Fus2Net. In the experiment, we used hyperparameter fine-tuning and regularization technology to make the Fus2Net convergence.


Sign in / Sign up

Export Citation Format

Share Document