Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings

2016 ◽  
Vol 65 ◽  
pp. 556-566 ◽  
Author(s):  
Meng Luo ◽  
Chaoshun Li ◽  
Xiaoyuan Zhang ◽  
Ruhai Li ◽  
Xueli An
2015 ◽  
Vol 39 (3) ◽  
pp. 593-603
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Hongzhi Teng ◽  
Jianmin Zhao

Gear and bearing faults are the main causes of gearbox failure. Till now, incipient fault diagnosis of these two components has been a problem and needs further research. In this context, it is found that Lucy–Richardson deconvolution (LRD) proved to be an excellent tool to enhance fault diagnosis in rolling element bearings and gears. LRD’s good identification capabilities of fault frequencies are presented which outperform envelope analysis. This is very critical for early fault diagnosis. The case studies were carried out to evaluate the effectiveness of the proposed method. The results of simulated and experimental studies show that LRD is efficient in alleviating the negative effect of noise and transmission path. The results of simulation and experimental tests demonstrated outperformance of LRD compared to classical envelope analysis for fault diagnosis in rolling element bearings and gears, especially when it is applied to the processing of signals with strong background noise.


2013 ◽  
Vol 332 (8) ◽  
pp. 2081-2097 ◽  
Author(s):  
Feiyun Cong ◽  
Jin Chen ◽  
Guangming Dong ◽  
Michael Pecht

Author(s):  
Yuan Lan ◽  
Xiaohong Han ◽  
Weiwei Zong ◽  
Xiaojian Ding ◽  
Xiaoyan Xiong ◽  
...  

Rolling element bearings constitute the key parts on rotating machinery, and their fault diagnosis is of great importance. In many real bearing fault diagnosis applications, the number of fault data is much less than the number of normal data, i.e. the data are imbalanced. Many traditional diagnosis methods will get low accuracy because they have a natural tendency to favor the majority class by assuming balanced class distribution or equal misclassification cost. To deal with imbalanced data, in this article, a novel two-step fault diagnosis framework is proposed to diagnose the status of rolling element bearings. Our proposed framework consists of two steps for fault diagnosis, where Step 1 makes use of weighted extreme learning machine in an effort to classify the normal or abnormal categories, and Step 2 further diagnoses the underlying anomaly in detail by using preliminary extreme learning machine. In addition, gravitational search algorithm is applied to further extract the significant features and determine the optimal parameters of the weighted extreme learning machine and extreme learning machine classifiers. The effectiveness of our proposed approach is testified on the raw data collected from the rolling element bearing experiments conducted in our Institute, and the empirical results show that our approach is really fast and can achieve the diagnosis accuracies more than 96%.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Sheng-wei Fei

In this article, fault diagnosis of bearing based on relevance vector machine classifier with improved binary bat algorithm is proposed, and the improved binary bat algorithm is used to select the appropriate features and kernel parameter of relevance vector machine. In the improved binary bat algorithm, the new velocities updating method of the bats is presented in order to ensure the decreasing of the probabilities of changing their position vectors’ elements when the position vectors’ elements of the bats are equal to the current best location’s element, and the increasing of the probabilities of changing their position vectors’ elements when the position vectors’ elements of the bats are unequal to the current best location’s element, which are helpful to strengthen the optimization ability of binary bat algorithm. The traditional relevance vector machine trained by the training samples with the unreduced features can be used to compare with the proposed improved binary bat algorithm–relevance vector machine method. The experimental results indicate that improved binary bat algorithm–relevance vector machine has a stronger fault diagnosis ability of bearing than the traditional relevance vector machine trained by the training samples with the unreduced features, and fault diagnosis of bearing based on improved binary bat algorithm–relevance vector machine is feasible.


2011 ◽  
Vol 305 ◽  
pp. 012129 ◽  
Author(s):  
Zhipeng Feng ◽  
Tianjin Wang ◽  
Ming J Zuo ◽  
Fulei Chu ◽  
Shaoze Yan

Sign in / Sign up

Export Citation Format

Share Document