Energy saving and Fuzzy-PID position control of electro-hydraulic system by leakage compensation through proportional flow control valve

2020 ◽  
Vol 101 ◽  
pp. 269-280 ◽  
Author(s):  
Gyan Wrat ◽  
Mohit Bhola ◽  
Prabhat Ranjan ◽  
Santosh Kr Mishra ◽  
J. Das
Author(s):  
So-Nam Yun ◽  
Yang-Lae Lee ◽  
Haroon Ahmad Khan ◽  
Chang-Nam Kang ◽  
Young-Bog Ham ◽  
...  

Author(s):  
Tahany W. Sadak ◽  
Taha E. Mkawee

This research investigation is focused on providing system performance under different operating conditions, with special focus on variations in the supply pressure. The investigations have been carried out for different system designs. The analysis of the results introduces the effect of system designs on its static and dynamic performance. Also, the investigations provide the effect of variations of system operating conditions and load value. A hydraulic system has been designed with variable velocity, pressure and load. The detailed examination has been carried out on a system that consists of a hydraulic power supply unit, control valves (pressure control valve, flow control valve, throttle valve and directional control valve). We have investigated the effect of adding a flow control valve (FCV) in the chosen circuit and also replacing the FCV with a proportional flow control valve (PFCV). In order to study the effect of this valve on system performance we examine the role of change of operating conditions and loading values on the system performance. Thus the displacement and speed of the piston of the hydraulic cylinder has been experimented under different values of supply pressure, flow rate, and load. We make this investigation to develop the performance evaluation by replacing the (FCV) by proportional flow control valve (PFCV) via position control so that one can achieve the static and dynamic performance of the system more accurate. Apparent improvement in flow rate ranges from 8% to 29.5% and dynamic response from 30 to 64%. The results reveal that this methodology allows one to achieve high quality of the product.


2014 ◽  
Vol 541-542 ◽  
pp. 1266-1270
Author(s):  
Wen Rui Wang ◽  
Yue Lei Yin

The proportional flow control valve is not only one of the key competent of vane damp,but also the execution unit of shock absorber damping force's regulation .The proportional flow control valves self-designed will combine the structural design of proportional control valve and crate CFD model . The thesis analyzes its distribution of flow field by CFD and acquires experimental validation .It analyzes dynamic characteristics and determine the relationship of flow and opening and drive current. The proportional control valve test verifies the correctness, finally. It is basis for analyzing of damping characteristics about vane damp, which can be used other proportional control valve CFD study.


2015 ◽  
Vol 809-810 ◽  
pp. 992-997
Author(s):  
Irina Tiţa ◽  
Irina Mardare

In fluid power systems, flow control may be done either with variable displacement pump or using variable orifice. In this paper is considered the second method for flow control. In a hydraulic system, working pressure is frequently variable and therefore the use of the method does not provide constant flow rates in all operating conditions. In order to keep a constant flow, if this is important in a certain case, the flow control must be accomplished using a pressure compensated flow control valve. In this paper are analyzed possible structural diagrams, mathematical model, block diagram and functional diagram for this kind of equipment. The influence of the spring compression is analyzed also. The diagrams proposed in the paper will be used for the study of a hydraulic system designated for applications with strict flow control. It will represent an important research instrument for such cases.


2005 ◽  
Vol 42 (11) ◽  
pp. 758-762
Author(s):  
So Nam Yun ◽  
Chan-Yong Kim ◽  
Young-Bog Ham ◽  
Seok-Jin Yoon ◽  
Kyung Woo Lee

2009 ◽  
Vol 147-149 ◽  
pp. 712-715 ◽  
Author(s):  
Vytautas Grigas ◽  
Aurelijus Domeika ◽  
Alexandra Legha ◽  
Danguole Satkunskiene ◽  
Rymantas Tadas Toločka

The paper presents results of experimental measurements of the parameters of rowing process when rowing in a river, on the pool-type training facility and on “Concept II” rowing machine. The comparison of results of measurements showed the significant difference of rowing force generated by rowing in the machine and in the boat, thus the novel training facility is proposed having the hydrodynamic loading unit equipped with proportional flow control valve controlled by computer evaluating parameters of rowing, which is able to ensure loading on the oars more adequate to the real rowing conditions.


Sign in / Sign up

Export Citation Format

Share Document