Intelligent vibration signal denoising method based on non-local fully convolutional neural network for rolling bearings

Author(s):  
Haoran Han ◽  
Huan Wang ◽  
Zhiliang Liu ◽  
Jiayi Wang
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


2019 ◽  
Vol 21 (6) ◽  
pp. 1437-1449 ◽  
Author(s):  
Jie Li ◽  
Yong Xiang ◽  
Jingyu Hou ◽  
Dan Xu

2010 ◽  
Vol 439-440 ◽  
pp. 1037-1041 ◽  
Author(s):  
Yan Jue Gong ◽  
Zhao Fu ◽  
Hui Yu Xiang ◽  
Li Zhang ◽  
Chun Ling Meng

On the basis of wavelet denoising and its better time-frequency characteristic, this paper presents an effective vibration signal denoising method for food refrigerant air compressor. The solution of eliminating strong noise is investigated with the combination of soft threshold and exponential lipschitza. The good denoising results show that the presented method is effective for improving the signal noise ratio and builds the good foundation for further extraction of the vibration signals.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 156883-156894 ◽  
Author(s):  
Yushu Zhang ◽  
Hongbo Lin ◽  
Yue Li ◽  
Haitao Ma

Sign in / Sign up

Export Citation Format

Share Document