scholarly journals Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency

iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102056
Author(s):  
Xianhua Bai ◽  
Dachao Yuan ◽  
Yaguang Li ◽  
Hui Song ◽  
Yangfan Lu ◽  
...  
2014 ◽  
Vol 695 ◽  
pp. 247-250 ◽  
Author(s):  
Norasyikin Ismail ◽  
Farid Nasir Ani

Gasification is a reaction process between solid or liquid carbonaceous materials with some gasifying agent to produce gaseous fuel. In this study, a microwave gasification test rig is designed to produce syngas from oil palm biochars. Carbon dioxide is used as the gasifying agent. Oil palm empty fruit bunch (EFB) and oil palm shell (OPS) biochars are used as the carbonaceous materials. The effects of CO2 flow rates on the type of biochars to the syngas produced are investigated. The optimum CO2 flow rate for EFB biochar gasification is 3 lpm where the gas compositions are 0.52% CH4, 50.52% CO2, 26.1% CO, and 22.86% H2. For OPS biochar, the optimum CO2 flowrate is 2 lpm that produce 6.92% CH4, 57.19% CO2, 10.98% CO, and 24.92% H2. For EFB biochar gasification, the specific volume of gas yield is from 1.22 to 1.51 m3/kg while for OPS biochar yields higher specific gas volume, ranging from 2.62 to 7.88 m3/kg. The highest carbon conversion efficiency and gas heating value for EFB biochar is 75.07% and 12.84 MJ/kg at 3 lpm respectively and 66.83%, 13.03 MJ/kg at 2 lpm for OPS biochar respectively . This concludes that EFB biochar produced higher quality syngas than OPS biochar because of the higher volume of CO and H2 content in the syngas produced at the higher carbon conversion efficiency with specific gas volume of 1.22 m3/kg.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2612 ◽  
Author(s):  
Tamošiūnas ◽  
Gimžauskaitė ◽  
Aikas ◽  
Uscila ◽  
Praspaliauskas ◽  
...  

The depletion and usage of fossil fuels causes environmental issues and alternative fuels and technologies are urgently required. Therefore, thermal arc water vapor plasma for a fast and robust waste/biomass treatment is an alternative to the syngas method. Waste cooking oil (WCO) can be used as an alternative potential feedstock for syngas production. The goal of this experimental study was to conduct experiments gasifying waste cooking oil to syngas. The WCO was characterized in order to examine its properties and composition in the conversion process. The WCO gasification system was quantified in terms of the produced gas concentration, the H2/CO ratio, the lower heating value (LHV), the carbon conversion efficiency (CCE), the energy conversion efficiency (ECE), the specific energy requirements (SER), and the tar content in the syngas. The best gasification process efficiency was obtained at the gasifying agent-to-feedstock (S/WCO) ratio of 2.33. At this ratio, the highest concentration of hydrogen and carbon monoxide, the H2/CO ratio, the LHV, the CCE, the ECE, the SER, and the tar content were 47.9%, 22.42%, 2.14, 12.7 MJ/Nm3, 41.3% 85.42%, 196.2 kJ/mol (or 1.8 kWh/kg), and 0.18 g/Nm3, respectively. As a general conclusion, it can be stated that the thermal arc-plasma method used in this study can be effectively used for waste cooking oil gasification to high quality syngas with a rather low content of tars.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


1989 ◽  
Author(s):  
James B. McNeely ◽  
Gerald H. Negley ◽  
Allen M. Barnett

Sign in / Sign up

Export Citation Format

Share Document