scholarly journals Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

2015 ◽  
Vol 106 ◽  
pp. 157-171 ◽  
Author(s):  
Geli Zhang ◽  
Xiangming Xiao ◽  
Jinwei Dong ◽  
Weili Kou ◽  
Cui Jin ◽  
...  
2018 ◽  
Vol 11 (1) ◽  
pp. 61 ◽  
Author(s):  
Efthymia Pavlidou ◽  
Mark van der Meijde ◽  
Harald van der Werff ◽  
Christoph Hecker

Earthquakes are reported to be preceded by anomalous increases in satellite-recorded thermal emissions, but published results are often contradicting and/or limited to short periods and areas around the earthquake. We apply a methodology that allows to detect subtle, localized spatio-temporal fluctuations in hyper-temporal, geostationary-based land surface temperature (LST) data. We study 10 areas worldwide, covering 20 large (Mw > 5.5) and shallow (<35 km) land-based earthquakes. We compare years and locations with and without earthquake, and we statistically evaluate our findings with respect to distance from epicentra and temporal coincidence with earthquakes. We detect anomalies throughout the duration of all datasets, at various distances from the earthquake, and in years with and without earthquake alike. We find no distinct repeated patterns in the case of earthquakes that happen in the same region in different years. We conclude that earthquakes do not have a significant effect on detected LST anomalies.


2011 ◽  
Vol 58-60 ◽  
pp. 1119-1123
Author(s):  
Jin Qu Zhang

Macao city located in the Pearl River delta, China, was chosen to study the effect of urban heat island and its time-series analysis of land surface temperature (LST) in spatial expansion. The LST was analyzed by a temperature separation method based on statistical results. In the case of urban area, it was composed by three parts: downtown and old built-up areas with high-density buildings and dwellings, new built-up areas and developing site. The trend of city development was studied that the developing site would become to be new built-up areas and the formerly new built-up areas would become to be the downtown and old built-up areas. These three parts stand for different stages of a city.


2019 ◽  
Vol 11 (21) ◽  
pp. 2588 ◽  
Author(s):  
Otgonbayar ◽  
Atzberger ◽  
Mattiuzzi ◽  
Erdenedalai

The objective of this research was to develop a robust statistical model to estimate climatologies (2002–2017) of monthly average near-surface air temperature (Ta) over Mongolia using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) time series products and terrain parameters. Two regression models were analyzed in this study linking automatic weather station data (Ta) with Earth observation (EO) images: partial least squares (PLS) and random forest (RF). Both models were trained to predict Ta climatologies for each of the twelve months, using up to 17 variables as predictors. The models were applied to the entire land surface of Mongolia, the eighteenth largest but most sparsely populated country in the world. Twelve of the predictor variables were derived from the LST time series products of the Terra MODIS satellite. The LST MOD11A2 (collection 6) products provided thermal information at a spatial resolution of 1 km and with 8-day temporal resolution from 2002 to 2017. Three terrain variables, namely, elevation, slope, and aspect, were extracted using a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), and two variables describing the geographical location of weather stations were extracted from vector data. For training, a total of 8544 meteorological data points from 63 automatic weather stations were used covering the same period as MODIS LST products. The PLS regression resulted in a coefficient of determination (R2) between 0.74 and 0.87 and a root-mean-square error (RMSE) from 1.20 °C to 2.19 °C between measured and estimated monthly Ta. The non-linear RF regression yielded even more accurate results with R2 in the range from 0.82 to 0.95 and RMSE from 0.84 °C to 1.93 °C. Using RF, the two best modeled months were July and August and the two worst months were January and February. The four most predictive variables were day/nighttime LST, elevation, and latitude. Using the developed RF models, spatial maps of the monthly average Ta at a spatial resolution of 1 km were generated for Mongolia (~1566 × 106 km2). This spatial dataset might be useful for various environmental applications. The method is transparent and relatively easy to implement.


Sign in / Sign up

Export Citation Format

Share Document