Normalization of the temporal effect on the MODIS land surface temperature product using random forest regression

2019 ◽  
Vol 152 ◽  
pp. 109-118 ◽  
Author(s):  
Wei Zhao ◽  
Hua Wu ◽  
Gaofei Yin ◽  
Si-Bo Duan
Author(s):  
A. C. Blanco ◽  
J. B. Babaan ◽  
J. E. Escoto ◽  
C. K. Alcantara

Abstract. Modelling of land surface temperature (LST) is conducted to be able to explain the spatial and temporal variations of LST using a set of explanatory variables. LST in a previous study was modelled as a linear function of vegetation cover and built up cover as quantified by the normalized difference vegetation index (NDVI) and the normalized difference built-up index (NDBI), respectively, and other variables, namely, albedo, solar radiation (SR), surface area-volume ratio (SVR), and skyview factor (SVF). SVF requires a digital surface model of sufficient resolution while SVR computation needs 3D volumetric features representing buildings as input. These inputs are typically not readily available. In addition, NDVI and NDBI do not fully describe the spatial variability of vegetation and built-up cover within an LST pixel. In this study, PlanetScope images (3m resolution) were processed to provide soil-adjusted vegetation index (SAVI) and VgNIR Built-up Index (VgNIR-BI) layers. The following gray level co-occurrence matrices (GLCM) were generated from SAVI and VgNIR-BI: Mean, Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Second Moment, and Correlation. Random Forest regression was run for several cases with different combinations of GLCM features and non-GLCM variables. Using GLCM features alone yielded less satisfactory models. However, the use of additional GLCM features in combination with other variables resulted in lower MSE and a slight increase in R2. Considering NDBI, NDVI, SAVI_GLCM_contrast, VgNIR-BI_GLCM_contrast, VgNIR-BI_GLCM_dissimilarity, and SAVI_GLCM_contrast only, the RF model yielded an MSE=1.657 and validation R2=0.822. While this 6-variable model’s performance is slightly less, the need for DSM and 3D building models which are necessary for the generation of SVF and SVR layers is eliminated. Exploratory regression (ER) was also conducted. The best 6-variable ER model (Adj. R2=0.79) consists of SVR, NDBI, NDVI, SAVI_GLCM_second_moment, VgNIR-BI_GLCM_mean, and VgNIR-BI_GLCM_entropy. In comparison, OLS regression using the 6 non-GLCM variables yielded an Adj. R2=0.691. The results of RFR and ER both indicate the value of GLCM features in providing valuable information to the models of LST. LST is best described through a combination of GLCM features describing relatively homogenous areas (i.e., dominant land cover or low-frequency areas) and the more heterogenous areas (i.e., edges or high-frequency areas) and non-GLCM variables.


2021 ◽  
Vol 13 (11) ◽  
pp. 2211
Author(s):  
Shuo Xu ◽  
Jie Cheng ◽  
Quan Zhang

Land surface temperature (LST) is an important parameter for mirroring the water–heat exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively low. In this study, we developed a TIR and PWM LST fusion method on based the random forest (RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition, and solar radiation, these variables were selected as candidate auxiliary variables to establish the best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01° can be obtained.


Sign in / Sign up

Export Citation Format

Share Document