scholarly journals In Situ Out-of-Plane Testing of Unreinforced Masonry Cavity Walls in as-Built and Improved Conditions

Structures ◽  
2015 ◽  
Vol 3 ◽  
pp. 187-199 ◽  
Author(s):  
Kevin Q. Walsh ◽  
Dmytro Y. Dizhur ◽  
Jalil Shafaei ◽  
Hossein Derakhshan ◽  
Jason M. Ingham
2017 ◽  
Vol 33 (1_suppl) ◽  
pp. 243-273 ◽  
Author(s):  
Giuseppe Brando ◽  
Davide Rapone ◽  
Enrico Spacone ◽  
Matt S. O'Banion ◽  
Michael J. Olsen ◽  
...  

This paper documents and analyzes the seismic behavior of unreinforced masonry (URM) buildings that were damaged by the 2015 Gorkha earthquake in Nepal, and reports on the performance of palaces, giving an overview on the failures suffered by significant examples of these monumental buildings. Field reconnaissance was completed through both rapid, in-situ visual assessment and state-of-the-art procedures utilizing light detection and ranging (lidar) and virtual reality (VR) technologies. Both the visual and virtual assessments were compared for 20 structures and were generally consistent; however, the virtual assessment process enabled detection of damage that could not be captured or was difficult to distinguish in the field observations. Further, both in-plane and out-of-plane mechanisms were analyzed and attributed to specific structural deficiencies that usually characterize poorly detailed masonry buildings. Moreover, wall overturning was correlated with the peculiarities of the pseudo-accelerations and rocking response spectra of the earthquake.


2014 ◽  
Vol 140 (6) ◽  
pp. 04014022 ◽  
Author(s):  
Hossein Derakhshan ◽  
Dmytro Dizhur ◽  
Michael C. Griffith ◽  
Jason M. Ingham

MRS Advances ◽  
2016 ◽  
Vol 1 (37) ◽  
pp. 2635-2640 ◽  
Author(s):  
Adele Moatti ◽  
Reza Bayati ◽  
Srinivasa Rao Singamaneni ◽  
Jagdish Narayan

ABSTRACTBi-epitaxial VO2 thin films with [011] out-of-plane orientation were integrated with Si(100) substrates through TiO2/TiN buffer layers. At the first step, TiN is grown epitaxially on Si(100), where a cube-on-cube epitaxy is achieved. Then, TiN was oxidized in-situ ending up having epitaxial r-TiO2. Finally, VO2 was deposited on top of TiO2. The alignment across the interfaces was stablished as VO2(011)║TiO2(110)║TiN(100)║Si(100) and VO2(110) /VO2(010)║TiO2(011)║TiN(112)║Si(112). The inter-planar spacing of VO2(010) and TiO2(011) equal to 2.26 and 2.50 Å, respectively. This results in a 9.78% tensile misfit strain in VO2(010) lattice which relaxes through 9/10 alteration domains with a frequency factor of 0.5, according to the domain matching epitaxy paradigm. Also, the inter-planar spacing of VO2(011) and TiO2(011) equals to 3.19 and 2.50 Å, respectively. This results in a 27.6% compressive misfit strain in VO2(011) lattice which relaxes through 3/4 alteration domains with a frequency factor of 0.57. We studied semiconductor to metal transition characteristics of VO2/TiO2/TiN/Si heterostructures and established a correlation between intrinsic defects and magnetic properties.


2021 ◽  
pp. 103389
Author(s):  
Pratik N. Gajjar ◽  
Elena Gabrielli ◽  
Dafne Carolina Martin-Alarcon ◽  
João M. Pereira ◽  
Paulo B. Lourenço ◽  
...  

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 894 ◽  
Author(s):  
Hongjiao Lin ◽  
Hejun Li ◽  
Qingliang Shen ◽  
Xiaohong Shi ◽  
Tao Feng ◽  
...  

An in-situ, catalyst-free method for synthesizing 3C-SiC ceramic nanowires (SiCNWs) inside carbon–carbon (C/C) composites was successfully achieved. Obtained samples in different stages were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman scattering spectroscopy. Results demonstrated that the combination of sol-gel impregnation and carbothermal reduction was an efficient method for in-situ SiCNW synthesis, inside C/C composites. Thermal properties and mechanical behaviors—including out-of-plane and in-plane compressive strengths, as well as interlaminar shear strength (ILLS) of SiCNW modified C/C composites—were investigated. By introducing SiCNWs, the initial oxidation temperature of C/C was increased remarkably. Meanwhile, out-of-plane and in-plane compressive strengths, as well as interlaminar shear strength (ILLS) of C/C composites were increased by 249.3%, 109.2%, and 190.0%, respectively. This significant improvement resulted from simultaneous reinforcement between the fiber/matrix (F/M) and matrix/matrix (M/M) interfaces, based on analysis of the fracture mechanism.


2021 ◽  
Vol 20 (2) ◽  
pp. 371-381
Author(s):  
Atabak Pourmohammad Sorkhab ◽  
◽  
Mesut Küçük ◽  
Ali Sari ◽  
◽  
...  

In this study, the out-of-plane response of infill walls that are widely used in Turkey and the surrounding regions were experimentally investigated. Several out-of-plane wall tests were performed in the laboratory, with the walls specimens produced with lateral hollow clay bricks (LHCB) and different mortar qualities. The walls were tested in their out-of-plane (OOP) direction under static load conditions and evaluated based on the load-bearing and energy dissipation capacities, crack propagations, mortar strengths, and initial stiffnesses. These walls are experimentally investigated to understand the effects of the mortar strength on the infill wall structural behaviors and to assess the effectiveness of the out-of-plane strength formulations. It was found that when the mortar strength is low, the first major crack occurs at the mortar, however, because of the arch mechanism efficiency in this situation the OOP load-carrying and energy dissipation capacities of unreinforced walls can be significantly increased. When the first major crack in the wall occurs in the brick itself, the arc mechanism is provided with delicate sections in the brick, which leads to strength decreasing in the walls. In this case, excessive deviations occur in the out-of-plane strength formulations estimates. This study shows that the arc mechanism, the damage start region and progress can change significantly unreinforced masonry (URM) infill walls behaviors.


2013 ◽  
Vol 57 ◽  
pp. 1-11 ◽  
Author(s):  
Pawan Agnihotri ◽  
Vaibhav Singhal ◽  
Durgesh C. Rai

Sign in / Sign up

Export Citation Format

Share Document