intrinsic defects
Recently Published Documents


TOTAL DOCUMENTS

672
(FIVE YEARS 116)

H-INDEX

55
(FIVE YEARS 8)

2022 ◽  
Vol 138 ◽  
pp. 106307
Author(s):  
Antonella Parisini ◽  
Alessio Bosio ◽  
Hans Jurgen von Bardeleben ◽  
Juan Jimenez ◽  
Shabnam Dadgostar ◽  
...  

2022 ◽  
Vol 201 ◽  
pp. 110933
Author(s):  
Camille Thenot ◽  
Rémy Besson ◽  
Pierre Sallot ◽  
Jean-Philippe Monchoux ◽  
Damien Connétable

2021 ◽  
Author(s):  
Yuanchao Huang ◽  
Rong Wang ◽  
Yiqiang Zhang ◽  
Deren Yang ◽  
Xiaodong Pi

Abstract As a common impurity in 4H-silicon carbide (4H-SiC), hydrogen (H) may play a role in the tuning of the electronic properties of 4H-SiC. In this work, we systemically explore the effect of H on the electronic properties of both n-type and p-type 4H-SiC. The passivation of H for intrinsic defects such as carbon vacancies (VC) and silicon vacancies (VSi) in 4H-SiC is also evaluated. We find that interstitial H at the bonding center of the Si-C bond (Hi bc) and interstitial H at the tetrahedral center of Si (Hi Si-te) dominate the defect configurations of H in p-type and n-type 4H-SiC, respectively. For n-type 4H-SiC, the compensation of Hi Si-te is found to pin the Fermi energy and hinder the increase of electron concentration for highly N-doped 4H-SiC. The compensation of Hi bc is negligible compared to that of VC on the p-type doping of Al-doped 4H-SiC. We have further examined whether H can passivate VC and improve carrier lifetime in 4H-SiC. It turns out that nonequilibrium passivation of VC by H is effective to eliminate the defect states of VC, which enhances the carrier lifetime of moderately doped 4H-SiC. Regarding the quantum-qubit applications of 4H-SiC, we find that H can readily passivate VSi during the creation of VSi centers. Thermal annealing is needed to decompose the resulting VSi-nH (n=1~4) complexes and promote the uniformity of the photoluminescence of VSi arrays in 4H-SiC. The current work may inspire the further development of the impurity engineering of H in 4H-SiC.


Author(s):  
Kristina Bockute ◽  

ZnO is a well-known traditional industrial material which has high potential to become one of the key components for the next generation of future electronics, LED emitters, visible light photocatalysis and others. In its pristine form ZnO has relatively wide band gap of approximately 3.4 eV, but a lot of emerging applications requires some level of electronic structure engineering and structure optimisation. Studies show that ZnO properties strongly depend on the intrinsic defects type and concentrations. Both characteristics usually are depending on the synthesis method. Accordingly, there is great interest to develop new methods which would allow to obtain ZnO with optimised band gap and other properties. In current, study ZnO films were deposited using reactive magnetron sputtering with unconventional Ar-O2 gas mixture supply control: Ar flow was controlled to maintain total gas pressure at 1x10-2 mbar, whereas O2 flow rate was actively adjusted to maintain the selected intensity of optical zinc emission from the working cathode zone. Applying such ZnO formation method it was possible to stabilise reactive magnetron sputtering process over wide range of conditions. Elemental composition analysis by XPS revealed that despite large variations in Zn emission peak intensity within tested experimental conditions all films had nearly identical Zn:O ratios but at the same time their structural and optical properties differed significantly. The colour of the films varied from highly transparent yellowish-greenish, to intense orange, to opaque black. XRD analysis showed that films consisted of single polycrystalline wurtzite phase with varying orientations. PL spectroscopy analysis revealed that films had a lot of various defects including oxygen and zinc vacancies, interstitials and surface defects. Wide variation of ZnO properties obtained by different reactive sputtering conditions demonstrates the potential of the proposed method to control the formation of various intrinsic defects and to tailor their concentration.


ACS Catalysis ◽  
2021 ◽  
pp. 14284-14292
Author(s):  
Guoqiang Gan ◽  
Shiying Fan ◽  
Xinyong Li ◽  
Jing Wang ◽  
Chunpeng Bai ◽  
...  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012076
Author(s):  
A A Khomich ◽  
A I Kovalev ◽  
R A Khmelnitsky ◽  
A V Khomich ◽  
A F Popovich ◽  
...  

Abstract Chemical vapor deposited (CVD) diamonds have been irradiated with fast reactor neutrons at fluencies F = 1·1018 and 3 · 1018 cm-2 and then heated at temperatures up to 1600 °C. The processes of annealing in and annealing out of various complexes of intrinsic defects responsible for vibrational and electron-vibrational bands in the IR absorption spectra have been studied in detail. Some tens of local vibrational modes and zero-phonon lines with rather small width caused by numerous complexes of intrinsic defects were observed in the 400-11000 cm-1 range.


Author(s):  
Yang Hua ◽  
Wei Bai ◽  
Sheng Wang ◽  
Yunbo Wu ◽  
Shengtao Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document