Computational parameter identification of strongest influence on the shear resistance of reinforced concrete beams by fiber reinforcement polymer

Structures ◽  
2020 ◽  
Vol 27 ◽  
pp. 118-127 ◽  
Author(s):  
Yan Cao ◽  
Qingming Fan ◽  
Sadaf Mahmoudi Azar ◽  
Rayed Alyousef ◽  
Salim T. Yousif ◽  
...  
2018 ◽  
Vol 250 ◽  
pp. 03003
Author(s):  
Noor Suhaida Galip ◽  
Roslli Noor Mohamed ◽  
Ramli Abdullah

The bent-up bars have not been used as shear reinforcement in beams since the past 40 years or so. In all cases of design and construction nowadays, shear forces are resisted by vertical links only. Some complications in installing the multiple set of bent-up bars, the less opportunity to have sufficient number of bent-up bars due to small number of flexural reinforcement provided at the mid-span of the beams and also the large anchorage required for the horizontal portion of the bars beyond the upper end of the bend could be the reasons behind this. This paper presents the results of tests on five rectangular reinforced concrete beams in which the effectiveness of welded inclined bars (WIB) as shear reinforcement was studied. Two of the beams were controlled specimens, with no shear reinforcement in one, and full design vertical links in another. The other three beams were provided with three different quantities of WIB, measured in terms of area to distance ratio, Asw / S as shear reinforcement in the shear spans. All beams were tested to failure under two point loads with a shear span to effective depth ratio of 2.34, which would ensure that the failure was due to shear unless their shear capacities were larger than the flexural capacity. The performances of the beams were measured in terms of deflection, crack formation, strains in WIB and on the concrete surfaces in the shear region, ultimate loads and failure modes. The results show that WIB alone is capable of carrying the whole shear forces in the beam, and larger shear capacities are achieved with a larger quantity of WIB, and a higher grade of the bars used. The beam with WIB requires 22% less in the quantity of Asw / S compared to that with vertical links to achieve the same shear resistance. These suggest that WIB can be used as an effective system of shear reinforcement in beams.


2019 ◽  
Vol 7 (1) ◽  
pp. 34-43
Author(s):  
Kadhim Zuboon Nasser ◽  
Ali Abdulhasan Khalaf ◽  
Fadhil K. Idan

This study adopted the investigation of the effect of a material that can be used as an alternative to steel reinforcement of shear in reinforced concrete beams, as the most susceptible to corrosion to which reduces the time service of the concrete structures and increase the maintenance costs is the steel reinforcement of shear for the closeness of surface of concrete. Therefor non-corroding material is needful for concrete structures and PVC fiber reinforcement is chosen. Experimentally nine reinforced concrete beams have been tested to determine the effect of PVC fiber reinforcement on the concrete beam resistance load, the load of cracks, deflection achieved and distribution with dimension of cracks. Three volume fraction ratios were taken for PVC fiber reinforcement (0, 0.25 and 0.5), which were identical to the shear reinforcement used in this research (0,0.29 and 0.54). All the concrete beams were tested with in on one program by applied a center load from the top in the middle to the failure load and the results were impressive. The specimens containing the PVC fiber reinforcement percentages achieved a remarkable increase in the crack and ultimate load of the concrete beams before and after cracks with direct effect in changing the failure type. While the deflection achieved due to the increase in PVC fiber percentage is more than the allowable deflection in the ACI Code equations of the reinforced concrete beams and more of these if the use of PVC fiber and steel reinforcement of shear together. A smaller measurement of the maximum cracks width was achieved by using advanced percentages of PVC fiber and shear reinforcement (0.5 and 0.54) respectively.


2011 ◽  
Vol 63 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Long Nguyen-Minh ◽  
Marián Rovňák

Sign in / Sign up

Export Citation Format

Share Document