Incorporation of localizing gradient-enhanced damage model into layered membrane elements for reinforced concrete structures subject to in-plane loading

Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 455-476
Author(s):  
Teng Tong ◽  
Yangchun Wang ◽  
Siqi Yuan ◽  
John C. Brigham ◽  
Zhao Liu
2001 ◽  
Vol 79 (7) ◽  
pp. 737-755 ◽  
Author(s):  
Roberto Scotta ◽  
Renato Vitaliani ◽  
Anna Saetta ◽  
Eugenio Oñate ◽  
Alex Hanganu

2012 ◽  
Vol 5 (1) ◽  
pp. 26-37 ◽  
Author(s):  
J. J. C. Pituba ◽  
M. M. S. Lacerda

This work presents one and two-dimensional numerical analyses using isotropic and anisotropic damage models for the concrete in order to discuss the advantages of these modeling. Initially, it is shortly described the damage model proposed by Mazars. This constitutive model assumes the concrete as isotropic and elastic material, where locally the damage is due to extensions. On the other hand, the damage model proposed by Pituba, the material is assumed as initial elastic isotropic medium presenting anisotropy, plastic strains and bimodular response (distinct elastic responses whether tension or compression stress states prevail) induced by the damage. To take into account for bimodularity two damage tensors governing the rigidity in tension and compression regimes, respectively, are introduced. Damage activation is expressed by two criteria indicating the initial and further evolution of damage. Soon after, the models are used in numerical analyses of the mechanical behavior of reinforced concrete structures. Accordingly with comparison of the obtained responses, considerations about the application of the isotropic and anisotropic damage models are presented for 1D and 2D reinforced concrete structures modeling as well as the potentialities of the simplified versions of damage models applied in situations of structural engineering.


2020 ◽  
Vol 14 (54) ◽  
Author(s):  
Thalyson Brito ◽  
Danilo Santos ◽  
Fabio Santos ◽  
Rafael Cunha ◽  
David Amorim

The analysis of reinforced concrete structures can be performed by means of experiments or numerical studies. The first way is usually quite expensive, so the second one sometimes is a good option to understand the physical behaviour of actual structures. Lumped damage mechanics appears as one of the latest nonlinear theories and presents itself as an interesting alternative to analyse the mechanical behaviour of reinforced concrete structures. The lumped damage mechanic applies concepts of the classic fracture and damage mechanics in plastic hinges for nonlinear analysis of reinforced concrete structures. Therefore, this paper deals with a novel physical definition of the correction factor γ for cracking evolution that ensures the presented lumped damage model depicts accuracy when it is compared to experimental observations of reinforced concrete beams and arches. Based on such experiments, the numerical analysis showed that γ value has upper and lower thresholds, depending on the physical and geometric properties of the reinforced concrete element. Notwithstanding, for γ values inside of the proposed interval, there is a best value of γ.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


Sign in / Sign up

Export Citation Format

Share Document