Nonlinear FE analysis on stiffness and resistance of bolted cold-formed steel built-up joints

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 2520-2533
Author(s):  
Feiliang Wang ◽  
Yan Han ◽  
Jian Yang
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 506 ◽  
Author(s):  
Alexandre Mathern ◽  
Jincheng Yang

Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior involving concrete cracking in tension and crushing in compression, practitioners make different choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations, assigning the bond between the concrete and the steel reinforcement, and solving problems related to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common modeling choices critically and develop a robust modeling strategy with consistency, reliability, and comparability. This paper proposes a modeling strategy and practical recommendations for the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices. The proposed modeling strategy aims at providing reliable predictions of flexural responses of RC members with a focus on concrete cracking behavior and crushing failure, which serve as the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed modeling strategy is comprehensively described with a focus on the critical modeling issues for RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP (CFRP) laminate in its soffit. The simulated results agree well with experimental measurements regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations presented herein are applicable to the nonlinear FE analysis of RC structures in general.


2013 ◽  
Vol 12 (4) ◽  
pp. 1615-1638 ◽  
Author(s):  
Georgia D. Kremmyda ◽  
Yasin M. Fahjan ◽  
Spyros G. Tsoukantas

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yanling Leng ◽  
Jinquan Zhang ◽  
Ruinian Jiang ◽  
Yangjian Xiao

Present approaches for assessing bridge redundancy are mainly based on nonlinear finite element (FE) analysis. Unfortunately, the real behavior of bridges in the nonlinear range is difficult to evaluate and a sound basis for the nonlinear FE analysis is not available. In addition, a nonlinear FE analysis is not feasible for practitioners to use. To tackle this problem, a new simplified approach based on linear FE analysis and field load testing is introduced in this paper to address the particular structural feature and topology of adjacent precast concrete box-beam bridges for the assessment of structural redundancy. The approach was first experimentally analyzed on a model bridge and then validated by a case study. The approach agrees well with the existing recognized method while reducing the computation complexity and improving the reliability. The analysis reveals that the level of redundancy of the bridge in the case study does not meet the recommended standard, indicating that the system factor recommended by the current bridge evaluation code for this bridge is inappropriate if considering the field condition. Further research on the redundancy level of this type of bridges is consequently recommended.


2001 ◽  
Author(s):  
Richard A. Livingston ◽  
Shuang Jin ◽  
Dhafer Marzougui

2017 ◽  
Vol 143 ◽  
pp. 306-315 ◽  
Author(s):  
Marcela Novischi Kataoka ◽  
Marcelo Araújo Ferreira ◽  
Ana Lúcia Homce de Cresce El Debs

Sign in / Sign up

Export Citation Format

Share Document