Weight function calculation method for analyzing mixed-mode shear cracks in reinforced concrete beams

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1327-1339
Author(s):  
Pengru Deng ◽  
Takashi Matsumoto
2010 ◽  
Vol 29-32 ◽  
pp. 1350-1356
Author(s):  
Qing Guo Yang ◽  
Yu Wei Zhang ◽  
Zhi Zhong Tu

Replacing the steel bar with GFRP (Glass Fiber Reinforced Plastics) bar can improve the durability of concrete structure in the corrosive environment. Different ratios of GFRP bar lead huge difference performance of GFRP reinforced concrete beams; therefore, to reduce the workload, it is very necessary to study GFRP reinforced concrete beams’ performance with suitable numerical calculation method. In the study, first, GFRP reinforced concrete beams’ mechanical behavior and failure characteristics were researched through the flexural experiments of GFRP reinforced concrete beams with different ratio of GFRP bar; Second, the numerical calculation model of GFRP reinforced concrete beams was built according to experimental results which contain the load-displacement curve and the phenomenon that concrete in compression zone are crushed, then the calculation criterion of obtaining the beam’s bearing capacity was proposed. Lastly, the bending bearing capacity of GFRP bar reinforced concrete beams with different ratio of GFRP is obtained through the finite element calculation, and the practical and simple calculation formula is acquired.


2013 ◽  
Vol 7 (1) ◽  
pp. 242-253
Author(s):  
Domenico Raffaele ◽  
Giuseppina Uva ◽  
Francesco Porco ◽  
Andrea Fiore

The assessment of the plastic rotation of reinforced concrete beams is an essential aspect to avoid structural brittle collapses. The value actually available can be generally determined as sum of two different components. The first, due to bending, the second for inclined shear cracks. This paper presents a simplified model which provides the flexural plastic rotation of the rectangular beams with a ``closed-form solution''. The approach is substantially dimensionless and includes main influencing factors the cross -section, as mechanical material properties, ductility, geometrical and mechanical reinforcement ratio, confinement effects. In closing, in order to appreciate the reliability of the procedure, a comparison with models proposed by international technical standards is made.


2021 ◽  
Vol 14 (1) ◽  
pp. 115-129
Author(s):  
Mustafa Joad ◽  
Ali L. Abass

This paper presented an experimental study of the behaviour of wide reinforced concrete beams with different shear spacing and beam width. Eight specimens in two groups, the group one contains four specimens with the dimensions of (200x500x1600mm) and shear reinforcement spacing (d/2, 0.65d, 3/4d and 1.0d), the group two contains four specimens with the dimensions of (200x600x1600mm) and shear reinforcement spacing (d/2, 0.55d, 3/4d and 1.0d), Variables studied in this study shear reinforcement spacing and width of wide beam, the increasing of shear reinforcement spacing gives close results in RC wide beam, increased shear reinforcement spacing decreased the ultimate loud by 6.6% and when increasing width of beam the ultimate loud decreased by 9.5%, The ultimate deflection decreased by 16.5% and when increasing width of beam decreased by 7.2 %,The number of flexural cracks was equal in all beams, when increasing width of beam the number of flexural crack increased by 2 cracks, The average spacing between shear cracks decreased by 7%, when increasing width of beam average spacing between shear cracks decreased by 19%.


2013 ◽  
Vol 438-439 ◽  
pp. 811-814 ◽  
Author(s):  
Quan Ji Han ◽  
Hai Tang Zhu ◽  
Hai Bo Cui

The research status and progress, in China and overseas, of long-term deflection of FRP reinforced concrete beams are briefly introduced in this paper. The mechanism, influencing factors and calculation method of long-term deflection of FRP reinforced concrete beams are discussed and summarized. Meanwhile, some advices for long-term deflection research of FRP reinforced concrete beams are proposed.


Sign in / Sign up

Export Citation Format

Share Document