Numerical simulation of masonry walls strengthened with vegetal fabric reinforced cementitious matrix (FRCM) composites and subjected to cyclic loads

Structures ◽  
2021 ◽  
Author(s):  
Luis Mercedes ◽  
Ernest Bernat-Maso ◽  
Lluis Gil
Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Nouman Khattak ◽  
Moustafa Mansour ◽  
Tamer El-Maaddawy ◽  
Najif Ismail

This paper aims to examine the nonlinear flexural behavior of continuous RC beam specimens strengthened with fabric-reinforced cementitious matrix (FRCM) composites through experimental testing and numerical modeling. A total of nine two-span RC beam specimens were constructed and tested. Test parameters included the type of FRCM (carbon (C-FRCM) and polyparaphenylene benzobisoxazole (PBO-FRCM), location of strengthening (sagging and hogging regions) and number of FRCM layers (two and four layers). Test results indicated that sagging strengthening resulted in a strength gain in the range of 17 to 29%, whereas hogging strengthening increased the load capacity by 9 to 17%. The use of C-FRCM resulted in a higher strength gain than that provided by PBO-FRCM composites. Specimens strengthened with PBO-FRCM exhibited, however, higher ductility and deformational capacity than those of their counterparts strengthened with C-FRCM. Doubling the number of FRCM layers resulted in no or insignificant increase in the load capacity but reduced the beam ductility. Specimens strengthened in the sagging regions exhibited moment redistribution ratios of 13 to 26% between the hogging and sagging regions. Insignificant moment redistribution was recorded for the specimens strengthened in the hogging region. Three-dimensional (3D) numerical simulation models, with and without an interfacial bond-slip law at the fabric–matrix interface, were developed. The inclusion of the bond-slip law in the modeling had an insignificant effect on predicted response. Although the models tended to underestimate the deflection, the predicted load capacities were within a 12% error band. Numerical findings were in agreement with those obtained from laboratory testing.


Author(s):  
Fayu Wang ◽  
Nicholas Kyriakides ◽  
Christis Chrysostomou ◽  
Eleftherios Eleftheriou ◽  
Renos Votsis ◽  
...  

AbstractFabric reinforced cementitious matrix (FRCM) composites, also known as textile reinforced mortars (TRM), an inorganic matrix constituting fibre fabrics and cement-based mortar, are becoming a widely used composite material in Europe for upgrading the seismic resistance of existing reinforced concrete (RC) frame buildings. One way of providing seismic resistance upgrading is through the application of the proposed FRCM system on existing masonry infill walls to increase their stiffness and integrity. To examine the effectiveness of this application, the bond characteristics achieved between (a) the matrix and the masonry substrate and (b) the fabric and the matrix need to be determined. A series of experiments including 23 material performance tests, 15 direct tensile tests of dry fabric and composites, and 30 shear bond tests between the matrix and brick masonry, were carried out to investigate the fabric-to-matrix and matrix-to-substrate bond behaviour. In addition, different arrangements of extruded polystyrene (XPS) plates were applied to the FRCM to test the shear bond capacity of this insulation system when used on a large-scale wall.


Sign in / Sign up

Export Citation Format

Share Document