scholarly journals Continuous Reinforced Concrete Beams Strengthened with Fabric-Reinforced Cementitious Matrix: Experimental Investigation and Numerical Simulation

Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Nouman Khattak ◽  
Moustafa Mansour ◽  
Tamer El-Maaddawy ◽  
Najif Ismail

This paper aims to examine the nonlinear flexural behavior of continuous RC beam specimens strengthened with fabric-reinforced cementitious matrix (FRCM) composites through experimental testing and numerical modeling. A total of nine two-span RC beam specimens were constructed and tested. Test parameters included the type of FRCM (carbon (C-FRCM) and polyparaphenylene benzobisoxazole (PBO-FRCM), location of strengthening (sagging and hogging regions) and number of FRCM layers (two and four layers). Test results indicated that sagging strengthening resulted in a strength gain in the range of 17 to 29%, whereas hogging strengthening increased the load capacity by 9 to 17%. The use of C-FRCM resulted in a higher strength gain than that provided by PBO-FRCM composites. Specimens strengthened with PBO-FRCM exhibited, however, higher ductility and deformational capacity than those of their counterparts strengthened with C-FRCM. Doubling the number of FRCM layers resulted in no or insignificant increase in the load capacity but reduced the beam ductility. Specimens strengthened in the sagging regions exhibited moment redistribution ratios of 13 to 26% between the hogging and sagging regions. Insignificant moment redistribution was recorded for the specimens strengthened in the hogging region. Three-dimensional (3D) numerical simulation models, with and without an interfacial bond-slip law at the fabric–matrix interface, were developed. The inclusion of the bond-slip law in the modeling had an insignificant effect on predicted response. Although the models tended to underestimate the deflection, the predicted load capacities were within a 12% error band. Numerical findings were in agreement with those obtained from laboratory testing.

2014 ◽  
Vol 1611 ◽  
pp. 1-6
Author(s):  
F. J. Baldenebro-Lopez ◽  
J. H. Castorena-Gonzalez ◽  
J. A. Baldenebro-Lopez ◽  
J.I. Velazquez-Dimas ◽  
J. E. Ledezma-Sillas ◽  
...  

ABSTRACTThe increasing use of polymeric reinforcements in concrete structures requires either the development of a new design theory or the adaptation of current designs considering the engineering properties of this type of materials. In this work a method for calculating the deflections of reinforced concrete elements is proposed, which can be used in predicting the flexural behavior of longitudinally reinforced concrete with PET strips in amounts up to 1%. The model theory assumes that concrete has a tensile load capacity different to zero, characterized by a uniaxial tensile stress-strain diagram. A series of tests were conducted to corroborate the validity of the suggested method, showing that the theory also correctly predicts the creep deformation post-cracking. The deflection results of reinforced concrete with recycled PET strips are presented. The tests are carried out by a simple beam with center-point loading, using three different amounts of reinforcement and comparing the experimental results with the theoretical results of the proposed model.


2019 ◽  
Vol 276 ◽  
pp. 01033
Author(s):  
Muhtar ◽  
Sri Murni Dewi ◽  
Wisnumurti ◽  
As’ad Munawir

Bamboo can use at the simple concrete construction because of the tensile strength of its mechanical property. Meanwhile, a slippery surface of the bamboo caused cracks in the bamboo reinforced concrete beam (BRC) not to spread and yield slip failure between a bamboo bar and concrete. Load test at the BRC beam yield humble load capacity. This study aims to improve the capacity and behavior of BRC beam bending by giving waterproof coating, sand, and hose clamp installation. The beam test specimen with the size of 75x150x1100mm made as many as 26 pieces with the variety of reinforcement. The hose clamp used on the bamboo reinforcement varies with a distance of 0 cm, 15 cm, 20 cm, and 25 cm. The testing using a simple beam with two-point loading. The test results show that BRC beams have different bending behavior compared to the steel reinforced concrete beam (SRC).


2021 ◽  
Vol 25 (Special) ◽  
pp. 4-100-4-114
Author(s):  
Wissam S. Abdullah ◽  
◽  
Hassan F. Hassan ◽  

This study investigated the flexural behavior of reinforcement concrete beam strengthened with different techniques. The purpose of this research to study the various techniques of strengthening and knowing the effect of each technique on the beam behavior .Ten simply supported beams tested in this study. The total length of the beams and clear span were 1800mm and 1650mm, respectively. The cross section was (180×250) mm. Tested beams were divided into two categories’ the first category consist of one beams and considered as reference, while the second category consist of nine beams divided into Two groups according to the Strengthening techniques such as near surface mounted (NSM) and external bonded reinforcement (EBR).The experimental results showed improvement in ultimate load capacity for strengthened beams ranging from (6 to 89%) for NSM and (31 to 96%) for EBR and reduction in deflection for strengthened beams ranging from (6 to 43%) as compared with reference beam. When the number and length of CFRP bars are increased, the number of cracks increase while the width of the cracks and the spacing decrease, and the same observation is made when the width of the CFRP sheet is increased. The experimental load capacities of strengthened beams were compared with the design provisions given by ACI440.2R-17 guideline for NSM and EBR technique and EC2 guideline for EBR technique, the average ratio (1.2 and 0.97) respectively ,which showed that reasonable and a good agreement for all strengthened beams.


Author(s):  
Amr H. Badawy ◽  
Ahmed Hassan ◽  
Hala El-Kady ◽  
L.M. Abd-El Hafez

The behavior of unbounded post tension and reinforced concrete beams under elevated temperature was presented. The experimental work was consisted of two major phases. In the first phase, the objective was studying the mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams respectively were studied. In the second phase, the residual mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams under elevated 400oC, for 120 minutes durations. The failure mechanisms, ultimate load capacity, and deflection at critical sections were monitored. The numerical prediction of the flexural behavior of the tested specimens is presented in this paper. This includes a comparison between the numerical and experimental test results according to ANSYS models. The results indicate that the prestressed beam with steel addition and reinforced concrete beams had higher resistance to beams under elevated 400oC than that of prestressed concrete beam in terms of ultimate capacity. It is also shown that the reinforced concrete beams have higher resistance to beams under elevated temperature than that of prestressed beam, prestressed beam with steel addition.


2017 ◽  
Vol 21 (2) ◽  
pp. 04016084 ◽  
Author(s):  
Usama Ebead ◽  
Kshitij C. Shrestha ◽  
Muhammad S. Afzal ◽  
Ahmed El Refai ◽  
Antonio Nanni

Sign in / Sign up

Export Citation Format

Share Document