Common Filaggrin Loss of Function Variants are Associated with Skin Cancer Risk

Author(s):  
Ayodele Adelanwa ◽  
Ahmed Yousaf ◽  
Wei Fang ◽  
Michael Kolodney
2002 ◽  
Vol 115 (11) ◽  
pp. 2349-2355 ◽  
Author(s):  
M. Cathy Scott ◽  
Kazumasa Wakamatsu ◽  
Shosuke Ito ◽  
Ana Luisa Kadekaro ◽  
Nobuhiko Kobayashi ◽  
...  

Cutaneous pigmentation is determined by the amounts of eumelanin and pheomelanin synthesized by epidermal melanocytes and is known to protect against sun-induced DNA damage. The synthesis of eumelanin is stimulated by the binding of α-melanotropin (α-melanocyte-stimulating hormone)to the functional melanocortin 1 receptor (MC1R) expressed on melanocytes. The human MC1R gene is highly polymorphic and certain allelic variants of the gene are associated with red hair phenotype, melanoma and non-melanoma skin cancer. The importance of the MC1R gene in determining skin cancer risk led us to examine the impact of specific polymorphisms in this gene on the responses of human melanocytes to α-melanotropin and UV radiation. We compared the ability of human melanocyte cultures, each derived from a single donor, to respond to α-melanotropin with dose-dependent stimulation of cAMP formation, tyrosinase activity and proliferation. In each of those cultures the MC1R gene was sequenced, and the eumelanin and pheomelanin contents were determined. Human melanocytes homozygous for Arg160Trp, heterozygous for Arg160Trp and Asp294His, or for Arg151Cys and Asp294His substitutions, but not melanocytes homozygous for Val92Met substitution, in the MC1R demonstrated a significantly reduced response toα-melanotropin. Additionally, melanocytes with a non-functional MC1R demonstrated a pronounced increase in their sensitivity to the cytotoxic effect of UV radiation compared with melanocytes expressing functional MC1R. We conclude that loss-of-function mutations in the MC1R gene sensitize human melanocytes to the DNA damaging effects of UV radiation, which may increase skin cancer risk.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2344
Author(s):  
Elisabeth A. George ◽  
Navya Baranwal ◽  
Jae H. Kang ◽  
Abrar A. Qureshi ◽  
Aaron M. Drucker ◽  
...  

(1) The incidence of skin cancer is increasing in the United States (US) despite scientific advances in our understanding of skin cancer risk factors and treatments. In vitro and in vivo studies have provided evidence that suggests that certain photosensitizing medications (PSMs) increase skin cancer risk. This review summarizes current epidemiological evidence on the association between common PSMs and skin cancer. (2) A comprehensive literature search was conducted to identify meta-analyses, observational studies and clinical trials that report on skin cancer events in PSM users. The associated risks of keratinocyte carcinoma (squamous cell carcinoma and basal cell carcinoma) and melanoma are summarized, for each PSM. (3) There are extensive reports on antihypertensives and statins relative to other PSMs, with positive and null findings, respectively. Fewer studies have explored amiodarone, metformin, antimicrobials and vemurafenib. No studies report on the individual skin cancer risks in glyburide, naproxen, piroxicam, chlorpromazine, thioridazine and nalidixic acid users. (4) The research gaps in understanding the relationship between PSMs and skin cancer outlined in this review should be prioritized because the US population is aging. Thus the number of patients prescribed PSMs is likely to continue to rise.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ling-I Hsu ◽  
Meei-Maan Wu ◽  
Yuan-Hung Wang ◽  
Cheng-Yeh Lee ◽  
Tse-Yen Yang ◽  
...  

Deficiency in the capability of xenobiotic detoxification and arsenic methylation may be correlated with individual susceptibility to arsenic-related skin cancers. We hypothesized that glutathione S-transferase (GST M1, T1, and P1), reactive oxygen species (ROS) related metabolic genes (NQO1, EPHX1, and HO-1), and DNA repair genes (XRCC1, XPD, hOGG1, and ATM) together may play a role in arsenic-induced skin carcinogenesis. We conducted a case-control study consisting of 70 pathologically confirmed skin cancer patients and 210 age and gender matched participants with genotyping of 12 selected polymorphisms. The skin cancer risks were estimated by odds ratio (OR) and 95% confidence interval (CI) using logistic regression. EPHX1 Tyr113His, XPD C156A, and GSTT1 null genotypes were associated with skin cancer risk (OR = 2.99, 95% CI = 1.01–8.83; OR = 2.04, 95% CI = 0.99–4.27; OR = 1.74, 95% CI = 1.00–3.02, resp.). However, none of these polymorphisms showed significant association after considering arsenic exposure status. Individuals carrying three risk polymorphisms of EPHX1 Tyr113His, XPD C156A, and GSTs presented a 400% increased skin cancer risk when compared to those with less than or equal to one polymorphism. In conclusion, GSTs, EPHX1, and XPD are potential genetic factors for arsenic-induced skin cancers. The roles of these genes for arsenic-induced skin carcinogenesis need to be further evaluated.


2005 ◽  
Vol 141 (8) ◽  
Author(s):  
Joel Hillhouse ◽  
Rob Turrisi

Sign in / Sign up

Export Citation Format

Share Document