scholarly journals In situ X-ray diffraction investigation of thermal decomposition of wood cellulose

2007 ◽  
Vol 80 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Gerald A. Zickler ◽  
Wolfgang Wagermaier ◽  
Sérgio S. Funari ◽  
Manfred Burghammer ◽  
Oskar Paris
2016 ◽  
Vol 120 (27) ◽  
pp. 14984-14990 ◽  
Author(s):  
Qin Pan ◽  
Ching-Chang Chung ◽  
Nanfei He ◽  
Jacob L. Jones ◽  
Wei Gao

2010 ◽  
Vol 651 ◽  
pp. 37-64 ◽  
Author(s):  
Ian C. Madsen ◽  
Ian E. Grey ◽  
Stuart J. Mills

A study of the thermal decomposition sequence of a sample of natural arsenian plumbojarosite has been undertaken using in situ X-ray diffraction. The sample was heated to 900°C using an Anton-Paar heating stage fitted to an INEL CPS120 diffractometer. The data were analysed using a whole-pattern, Rietveld based approach for the extraction of quantitative phase abundances. The instrument configuration used required the development and application of algorithms to correct for aberrations in the (i) peak intensities due to differing path lengths of incident and diffracted beams in the sample and (ii) peak positions due to sample displacement. Details of the structural models used were refined at selected steps in the pattern and then fixed for subsequent analysis. The data sequence consists of some 110 individual data sets which were analysed sequentially with the output of each run forming the input for analysis of the next data set. The results of the analysis show a complex breakdown and recrystallisation sequence including the formation of a major amount of amorphous material after initial breakdown of the plumbojarosite.


2006 ◽  
Vol 42 (2) ◽  
pp. 534-538 ◽  
Author(s):  
Daniel X. Gouveia ◽  
Odair P. Ferreira ◽  
Antonio G. Souza Filho ◽  
M. G. da Silva ◽  
J. A. C. de Paiva ◽  
...  

2002 ◽  
Vol 58 (5) ◽  
pp. 808-814 ◽  
Author(s):  
Axel Nørlund Christensen ◽  
Rita Grønbæk Hazell ◽  
Ian Charles Madsen

The synthesis of BaC2O4·0.5H2O and its thermal decomposition to α-BaC2O4 and β-BaC2O4 was investigated. BaC2O4·0.5H2O is precipitated at room temperature from aqueous solutions of barium chloride and ammonium oxalate. The deuterated compound BaC2O4·0.5D2O was made in analogy with D2O as the solvent. The compounds were characterized by X-ray and neutron diffraction analysis. Single-crystal X-ray diffraction of BaC2O4·0.5H2O measured at 120 K gave the triclinic cell a = 8.692 (1), b = 9.216 (1), c = 6.146 (1) Å, α = 95.094 (3), β = 95.492 (3), γ = 64.500 (3)°, space group P\bar 1, Z = 4. Two independent Ba atoms are each coordinated to nine O atoms at distances from 2.73 (1) to 2.99 (1) Å. One of the two oxalate ions deviates significantly from planarity. The water molecule does form weak hydrogen bonds. In situ X-ray powder diffraction was used to study the thermal decomposition of BaC2O4·0.5H2O and the formation of α-BaC2O4. The X-ray powder pattern of α-BaC2O4 measured at 473 K was indexed on a triclinic cell with a = 5.137 (3), b = 8.764 (6), c = 9.006 (4) Å, α = 83.57 (4), β = 98.68 (5), γ = 99.53 (5)°, and the space group P\bar 1 with Z = 4.


2007 ◽  
Vol 111 (44) ◽  
pp. 16693-16699 ◽  
Author(s):  
Hilde Grove ◽  
Magnus H. Sørby ◽  
Hendrik W. Brinks ◽  
Bjørn C. Hauback

2018 ◽  
Vol 57 (9) ◽  
pp. 5292-5298 ◽  
Author(s):  
Daniel Friedrich ◽  
Marc Schlosser ◽  
Christian Näther ◽  
Arno Pfitzner

2013 ◽  
Vol 3 (6) ◽  
pp. 729-736 ◽  
Author(s):  
Zonghai Chen ◽  
Yang Ren ◽  
Eungje Lee ◽  
Christopher Johnson ◽  
Yan Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document