scholarly journals GW25-e5146 High-salt diet decreases ACE2 and activates TGF-β1/Smads signaling pathway in vascular remodeling

2014 ◽  
Vol 64 (16) ◽  
pp. C238
Author(s):  
Liu Chan ◽  
Shang Qian-Hui
2021 ◽  
Vol 8 ◽  
Author(s):  
Jian Liu ◽  
Xi-xin Ji ◽  
Yang Fu ◽  
Wen-chao Zhang ◽  
Hui-fang Ji ◽  
...  

Exercising was reported by several studies to bring great benefits to heart failure with preserved ejection fraction (HFpEF), which reduced the hospitalization and the mortality of heart failure. However, the underlying mechanism of exercising on HFpEF remains unclear. In the present study, we designed and constructed a device that can perform early passive leg movement (ePLM) in rats and further observed whether treatment of ePLM exerts protective effects on HFpEF of rats. Rats were fed with high salt feed to establish an animal model of pre-clinical diastolic dysfunction (PDD), which would eventually develop into HFpEF, and then treated rats with ePLM. We conducted several experiments to evaluate the conditions of heart and blood vessel. The results show that diastolic functions of heart and blood vessel in rats were significantly improved by treatment of ePLM. We also found that pathological injuries of heart and blood vessel were ameliorated after treatment of ePLM. Moreover, treatment of ePLM decreased the protein levels of Collagen type I, Collagen type III, MMP2, and MMP9 in heart and blood vessel, indicating that cardiac and vascular fibrosis were reduced apparently by treatment of ePLM. Further investigation suggested that treatment of ePLM probably inhibit the activation of TGF-β1/Smad3 signaling pathway as well as promote the activation of Akt/eNOS signaling pathway in high salt diet induced HFpEF. In conclusion, treatment of ePLM alleviated high salt diet induced HFpEF by inhibiting fibrosis via suppressing TGF-β1/Smad3 signaling pathway as well as activating Akt/eNOS signaling pathway, implicating treatment of ePLM as a promising novel non-pharmacological approach for HFpEF.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenchao Zhang ◽  
Jianwei Liu ◽  
Yang Fu ◽  
Huifang Ji ◽  
Zheyan Fang ◽  
...  

Previous studies have confirmed the clinical efficacy of sacubitril/valsartan (Sac/Val) for the treatment of heart failure with reduced ejection fraction (HFrEF). However, the role of Sac/Val in heart failure with preserved ejection fraction (HFpEF) remains unclear. Sac/Val is a combination therapeutic medicine comprising sacubitril and valsartan that acts as a first angiotensin receptor blocker and neprilysin inhibitor (angiotensin-receptor neprilysin inhibitor (ARNI)). Here, we investigated the role of Sac/Val in high-salt diet-induced HFpEF coupled with vascular injury as well as the underlying mechanism. Rats were fed with high-salt feed, followed by intragastric administration of Sac/Val (68 mg/kg; i.g.). The results of functional tests revealed that a high-salt diet caused pathological injuries in the heart and vascular endothelium, which were significantly reversed by treatment with Sac/Val. Moreover, Sac/Val significantly decreased the levels of fibrotic factors, including type I collagen and type Ⅲ collagen, thus, reducing the ratio of MMP2/TIMP2 while increasing Smad7 levels. Further investigation suggested that Sac/Val probably reversed the effects of high-salt diet-induced HFpEF by inhibiting the activation of the TGF-β1/Smad3 signaling pathway. Thus, treatment with Sac/Val effectively alleviated the symptoms of high-salt diet-induced HFpEF, probably by inhibiting fibrosis via the TGF-β1/Smad3 signaling pathway, supporting the therapeutic potential of Sac/Val for the treatment of HFpEF.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Olga V Fedorova ◽  
Victoria Shilova ◽  
Courtney A Marshall ◽  
Yongqing Zhang ◽  
Elin Lehrmann ◽  
...  

Elevated levels of cardiotonic steroid marinobufagenin (MBG) are implicated in pathogenesis of salt-sensitive hypertension in Dahl-S rats (DS), and induce cardiac fibrosis in rats with experimental uremic cardiomyopathy. We hypothesized that in hypertensive DS immunoneutralization of MBG with a monoclonal antibody (Mab) would affect expression of profibrotic genes and would exhibit anti-remodeling effects. We studied following groups (n=6 each): (1) DS on a low salt (0.3% NaCl) diet (LS); (2) DS on a high salt (8% NaCl) diet for 7 weeks (HS); (3) DS on a high salt diet for 7 weeks, following 3E9 anti-MBG Mab treatment for 5 days (HSAB). Levels of MBG, and levels of mRNA expression in aorta (microarray analysis, Illumina) were assessed. In HS vs. LS, BP increased by 78 mmHg (p<0.01), plasma MBG doubled (p<0.05), renal MBG excretion increased 6-fold (p<0.01), and relative weights of aortae increased (4.44±0.17 vs. 3.01±0.06 mg/mm x kg BW, p<0.01). In HSAB, BP decreased by 35 mmHg (p<0.01), and weights of aortae were markedly reduced (3.72±0.06 mg/mm x kg BW; p<0.01) vs. HS. In hypertensive DS, genes implicated in TGFβ-signaling (Table) were up-regulated, and were down-regulated following immunoneutralization of MBG. Thus, MBG participates in vascular remodeling in DS, and immunoneutralization of MBG produces an anti-remodeling effect associated with down-regulation of genes implicated in TGFβ-induced pro-fibrotic signaling. Table . Z-ratio of paired analysis of gene expression in aorta:


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 463-P
Author(s):  
TOMONORI KIMURA ◽  
YOSHITAKA HASHIMOTO ◽  
TAKAFUMI SENMARU ◽  
EMI USHIGOME ◽  
MASAHIDE HAMAGUCHI ◽  
...  
Keyword(s):  

2019 ◽  
Vol 20 (14) ◽  
pp. 3495 ◽  
Author(s):  
Yanling Yan ◽  
Jiayan Wang ◽  
Muhammad A. Chaudhry ◽  
Ying Nie ◽  
Shuyan Sun ◽  
...  

We have demonstrated that Na/K-ATPase acts as a receptor for reactive oxygen species (ROS), regulating renal Na+ handling and blood pressure. TALLYHO/JngJ (TH) mice are believed to mimic the state of obesity in humans with a polygenic background of type 2 diabetes. This present work is to investigate the role of Na/K-ATPase signaling in TH mice, focusing on susceptibility to hypertension due to chronic excess salt ingestion. Age-matched male TH and the control C57BL/6J (B6) mice were fed either normal diet or high salt diet (HS: 2, 4, and 8% NaCl) to construct the renal function curve. Na/K-ATPase signaling including c-Src and ERK1/2 phosphorylation, as well as protein carbonylation (a commonly used marker for enhanced ROS production), were assessed in the kidney cortex tissues by Western blot. Urinary and plasma Na+ levels were measured by flame photometry. When compared to B6 mice, TH mice developed salt-sensitive hypertension and responded to a high salt diet with a significant rise in systolic blood pressure indicative of a blunted pressure-natriuresis relationship. These findings were evidenced by a decrease in total and fractional Na+ excretion and a right-shifted renal function curve with a reduced slope. This salt-sensitive hypertension correlated with changes in the Na/K-ATPase signaling. Specifically, Na/K-ATPase signaling was not able to be stimulated by HS due to the activated baseline protein carbonylation, phosphorylation of c-Src and ERK1/2. These findings support the emerging view that Na/K-ATPase signaling contributes to metabolic disease and suggest that malfunction of the Na/K-ATPase signaling may promote the development of salt-sensitive hypertension in obesity. The increased basal level of renal Na/K-ATPase-dependent redox signaling may be responsible for the development of salt-sensitive hypertension in polygenic obese TH mice.


Hypertension ◽  
2005 ◽  
Vol 45 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Magdalena Gonzalez ◽  
Lorena Lobos ◽  
Felipe Castillo ◽  
Lorna Galleguillos ◽  
Nandy C. Lopez ◽  
...  

2021 ◽  
pp. 102796
Author(s):  
Bryan K. Becker ◽  
Jermaine G. Johnston ◽  
Carolyn Young ◽  
Alfredo A. Torres Rodriguez ◽  
Chunhua Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document