Continuing Medical Education examination: Molecular mechanisms of β2-adrenergic receptor function, response, and regulation

2006 ◽  
Vol 117 (1) ◽  
pp. 25-25
2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anita Sahu ◽  
Sromona D Mukherjee ◽  
Conner P Witherow ◽  
Kate Stenson ◽  
John Tesmer ◽  
...  

Insulin impairs β2-adrenergic receptor (β2AR) function via trans-phosphorylation through G protein-coupled receptor kinase 2 (GRK2). However, less is known about dephosphorylation mechanisms mediated by protein phosphatase 2A (PP2A) during this insulin-β2AR cross-talk. Pharmacologic or genetic inhibition of phosphoinositide 3-kinase γ (PI3Kγ) unexpectedly resulted in significant reduction of insulin-mediated β2AR phosphorylation. Interestingly, β2AR-associated phosphatase activity was inhibited by insulin but was reversed by knock-down of PI3Kγ showing negative regulation of PP2A by PI3Kγ. Co-immunoprecipitation and surface plasmon resonance studies using purified proteins showed that GRK2 and PI3Kγ form a complex and could be recruited to β2ARs as GRK2 interacts with insulin receptor substrate (IRS) following insulin treatment. Further, co-immunoprecipitation studies showed that PI3Kγ directly interacted with both IRS-1 and IRS-2 but only IRS-2 interaction with PI3Kγ significantly increased following insulin stimulation. These results indicated that PI3Kγ could also be directly recruited to the receptor complex by IRS-2. Consistently, β-blocker pretreatment did not reduce insulin-mediated β2AR phosphorylation indicating agonist- and Gβγ-independent non-canonical regulation of receptor function. Mechanistically, PI3Kγ inhibits PP2A activity at the βAR complex by phosphorylating an intracellular inhibitor of PP2A (I2PP2A). Knock-down or CRISPR ablation of endogenous I2PP2A unlocked PP2A inhibition mediating β2AR dephosphorylation showing an unappreciated acute regulation of PP2A in mediating insulin-β2AR cross-talk.


2013 ◽  
Vol 85 (3) ◽  
pp. 472-481 ◽  
Author(s):  
Dean P. Staus ◽  
Laura M. Wingler ◽  
Ryan T. Strachan ◽  
Soren G. F. Rasmussen ◽  
Els Pardon ◽  
...  

Shock ◽  
2004 ◽  
Vol 21 ◽  
pp. 66
Author(s):  
K. Muthu ◽  
J. Deng ◽  
L-K He ◽  
S. Sen ◽  
S. Bansal ◽  
...  

2020 ◽  
Author(s):  
Anita Sahu ◽  
Yu Sun ◽  
Sromona Mukherjee ◽  
Conner Witherow ◽  
Kate Stenson ◽  
...  

AbstractInsulin impairs β2-adrenergic receptor (β2AR) function through G protein-coupled receptor kinase 2 (GRK2) by phosphorylation but less is known about dephosphorylation mechanisms mediated by protein phosphatase 2A (PP2A). Pharmacologic or genetic inhibition of phosphoinositide 3-kinase γ (PI3Kγ) unexpectedly resulted in significant reduction of insulin-mediated β2AR phosphorylation. Interestingly, β2AR-associated phosphatase activity was inhibited by insulin but was reversed by knock-down of PI3Kγ showing negative regulation of PP2A by PI3Kγ. Co-immunoprecipitation and surface plasmon resonance studies using purified proteins showed that GRK2 and PI3Kγ form a complex and could be recruited to β2ARs as GRK2 interacts with insulin receptor substrate following insulin treatment. Consistently, β-blocker pretreatment did not reduce insulin-mediated β2AR phosphorylation indicating agonist- and Gβγ-independent non-canonical regulation of receptor function. Mechanistically, PI3Kγ inhibits PP2A activity at the βAR complex by phosphorylating an intracellular inhibitor of PP2A (I2PP2A). Knock-down or CRISPR ablation of endogenous I2PP2A unlocked PP2A inhibition mediating β2AR dephosphorylation showing an unappreciated acute regulation of PP2A in mediating insulin-β2AR cross-talk.SummaryInsulin impairs β2-adrenergic receptor (β2AR) function through G protein-coupled receptor kinase 2 (GRK2). We show that insulin simultaneously inhibits protein phosphatase 2A (PP2A) sustaining β2AR functional impairment. Unexpectedly, releasing PP2A inhibition by PI3Kγ preserves β2AR function despite intact insulin-driven GRK2-mechanisms.


CHEST Journal ◽  
2002 ◽  
Vol 121 (3) ◽  
pp. 45S-46S ◽  
Author(s):  
Phillip Factor ◽  
Zaher A. Azzam ◽  
Gökhan M. Mutlu ◽  
Jacob I. Sznajder ◽  
Vidas Dumasius

Sign in / Sign up

Export Citation Format

Share Document