Abstract P427: Inhibition Of PP2A By Insulin Impairs Beta-Adrenergic Receptor Function

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anita Sahu ◽  
Sromona D Mukherjee ◽  
Conner P Witherow ◽  
Kate Stenson ◽  
John Tesmer ◽  
...  

Insulin impairs β2-adrenergic receptor (β2AR) function via trans-phosphorylation through G protein-coupled receptor kinase 2 (GRK2). However, less is known about dephosphorylation mechanisms mediated by protein phosphatase 2A (PP2A) during this insulin-β2AR cross-talk. Pharmacologic or genetic inhibition of phosphoinositide 3-kinase γ (PI3Kγ) unexpectedly resulted in significant reduction of insulin-mediated β2AR phosphorylation. Interestingly, β2AR-associated phosphatase activity was inhibited by insulin but was reversed by knock-down of PI3Kγ showing negative regulation of PP2A by PI3Kγ. Co-immunoprecipitation and surface plasmon resonance studies using purified proteins showed that GRK2 and PI3Kγ form a complex and could be recruited to β2ARs as GRK2 interacts with insulin receptor substrate (IRS) following insulin treatment. Further, co-immunoprecipitation studies showed that PI3Kγ directly interacted with both IRS-1 and IRS-2 but only IRS-2 interaction with PI3Kγ significantly increased following insulin stimulation. These results indicated that PI3Kγ could also be directly recruited to the receptor complex by IRS-2. Consistently, β-blocker pretreatment did not reduce insulin-mediated β2AR phosphorylation indicating agonist- and Gβγ-independent non-canonical regulation of receptor function. Mechanistically, PI3Kγ inhibits PP2A activity at the βAR complex by phosphorylating an intracellular inhibitor of PP2A (I2PP2A). Knock-down or CRISPR ablation of endogenous I2PP2A unlocked PP2A inhibition mediating β2AR dephosphorylation showing an unappreciated acute regulation of PP2A in mediating insulin-β2AR cross-talk.

2020 ◽  
Author(s):  
Anita Sahu ◽  
Yu Sun ◽  
Sromona Mukherjee ◽  
Conner Witherow ◽  
Kate Stenson ◽  
...  

AbstractInsulin impairs β2-adrenergic receptor (β2AR) function through G protein-coupled receptor kinase 2 (GRK2) by phosphorylation but less is known about dephosphorylation mechanisms mediated by protein phosphatase 2A (PP2A). Pharmacologic or genetic inhibition of phosphoinositide 3-kinase γ (PI3Kγ) unexpectedly resulted in significant reduction of insulin-mediated β2AR phosphorylation. Interestingly, β2AR-associated phosphatase activity was inhibited by insulin but was reversed by knock-down of PI3Kγ showing negative regulation of PP2A by PI3Kγ. Co-immunoprecipitation and surface plasmon resonance studies using purified proteins showed that GRK2 and PI3Kγ form a complex and could be recruited to β2ARs as GRK2 interacts with insulin receptor substrate following insulin treatment. Consistently, β-blocker pretreatment did not reduce insulin-mediated β2AR phosphorylation indicating agonist- and Gβγ-independent non-canonical regulation of receptor function. Mechanistically, PI3Kγ inhibits PP2A activity at the βAR complex by phosphorylating an intracellular inhibitor of PP2A (I2PP2A). Knock-down or CRISPR ablation of endogenous I2PP2A unlocked PP2A inhibition mediating β2AR dephosphorylation showing an unappreciated acute regulation of PP2A in mediating insulin-β2AR cross-talk.SummaryInsulin impairs β2-adrenergic receptor (β2AR) function through G protein-coupled receptor kinase 2 (GRK2). We show that insulin simultaneously inhibits protein phosphatase 2A (PP2A) sustaining β2AR functional impairment. Unexpectedly, releasing PP2A inhibition by PI3Kγ preserves β2AR function despite intact insulin-driven GRK2-mechanisms.


Biochemistry ◽  
1996 ◽  
Vol 35 (13) ◽  
pp. 4155-4160 ◽  
Author(s):  
Luc Ménard ◽  
Stephen S. G. Ferguson ◽  
Larry S. Barak ◽  
Lucie Bertrand ◽  
Richard T. Premont ◽  
...  

2012 ◽  
Vol 287 (42) ◽  
pp. 35669-35677 ◽  
Author(s):  
Michio Nakaya ◽  
Satsuki Chikura ◽  
Kenji Watari ◽  
Natsumi Mizuno ◽  
Koji Mochinaga ◽  
...  

G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called “biased ligands” elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β1-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β1-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β1-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers.


2006 ◽  
Vol 281 (42) ◽  
pp. 31940-31949
Author(s):  
Supachoke Mangmool ◽  
Tatsuya Haga ◽  
Hiroyuki Kobayashi ◽  
Kyeong-Man Kim ◽  
Hiroyasu Nakata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document