scholarly journals Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor–transmembrane protein 16A–voltage-dependent Ca2+ channel axis and contribute to bronchial hyperresponsiveness in asthma

2018 ◽  
Vol 141 (4) ◽  
pp. 1259-1268.e11 ◽  
Author(s):  
Pei Wang ◽  
Wei Zhao ◽  
Jie Sun ◽  
Tao Tao ◽  
Xin Chen ◽  
...  
2018 ◽  
Vol 831 ◽  
pp. 9-19 ◽  
Author(s):  
Qingfeng Yu ◽  
Christian Gratzke ◽  
Yiming Wang ◽  
Annika Herlemann ◽  
Frank Strittmatter ◽  
...  

2004 ◽  
Vol 101 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Chie Sakihara ◽  
William J. Perkins ◽  
David O. Warner ◽  
Keith A. Jones

Background Anesthetics inhibit airway smooth muscle contraction in part by a direct effect on the smooth muscle cell. This study tested the hypothesis that the anesthetics halothane and hexanol, which both relax airway smooth muscle in vitro, inhibit acetylcholine-promoted nucleotide exchange at the alpha subunit of the Gq/11 heterotrimeric G protein (Galphaq/11; i.e., they inhibit muscarinic receptor-Galphaq/11 coupling). Methods The effect of halothane (0.38 +/- 0.02 mm) and hexanol (10 mm) on basal and acetylcholine-stimulated Galphaq/11 guanosine nucleotide exchange was determined in membranes prepared from porcine tracheal smooth muscle. The nonhydrolyzable, radioactive form of guanosine-5'-triphosphate, [S]GTPgammaS, was used as the reporter for Galphaq/11 subunit dissociation from the membrane to soluble fraction, which was immunoprecipitated with rabbit polyclonal anti-Galphaq/11 antiserum. Results Acetylcholine caused a significant time- and concentration-dependent increase in the magnitude of Galphaq/11 nucleotide exchange compared with basal values (i.e., without acetylcholine), reaching a maximal difference at 100 microm (35.9 +/-2.9 vs. 9.8 +/-1.2 fmol/mg protein, respectively). Whereas neither anesthetic had an effect on basal Galphaq/11 nucleotide exchange, both halothane and hexanol significantly inhibited the increase in Galphaq/11 nucleotide exchange produced by 30 microm acetylcholine (by 59% and 68%, respectively). Conclusions Halothane and hexanol interact with the receptor-heterotrimeric G-protein complex in a manner that prevents acetylcholine-promoted exchange of guanosine-5(')-triphosphate for guanosine-5'-diphosphate at Galphaq/11. These data are consistent with the ability of anesthetics to interfere with cellular processes mediated by heterotrimeric G proteins in many cells, including effects on muscarinic receptor-G-protein regulation of airway smooth muscle contraction.


1995 ◽  
Vol 83 (6) ◽  
pp. 1274-1282 ◽  
Author(s):  
Michiaki Yamakage ◽  
Carol A. Hirshman ◽  
Thomas L. Croxton

Abstract Background Intravenously administered anesthetics directly inhibit airway smooth muscle contraction. Because many anesthetic agents affect membrane ion channel function and sustained contraction of airway smooth muscle requires the influx of Calcium2+ through voltage-dependent Calcium2+ channels, it was hypothesized that intravenous anesthetics inhibit airway smooth muscle voltage-dependent Calcium2+ channels.


2000 ◽  
Vol 93 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Michiaki Yamakage ◽  
Naoki Tsujiguchi ◽  
Jun-ichi Hattori ◽  
Yasuhiro Kamada ◽  
Akiyoshi Namiki

Background Because exposure to low temperature can modify the effect of volatile anesthetics on airway smooth muscle contraction, this study was conducted to investigate low-temperature modifications of the inhibitory effects of isoflurane and sevoflurane on canine tracheal smooth muscle tone by simultaneously measuring the muscle tension and intracellular concentration of Ca2+ ([Ca2+]i) and by measuring voltage-dependent Ca2+ channel activity. Methods [Ca2+]i was monitored by the 500-nm light emission ratio of preloaded fura-2, a Ca2+ indicator. Isometric tension was measured simultaneously. Whole cell patch clamp recording techniques were used to observe voltage-dependent Ca2+ channel activity in dispersed muscle cells. Isoflurane (0-3.0%) or sevoflurane (0-3%) was introduced to a bath solution at various temperatures (37, 34, or 31 degrees C). Results Low temperature (34 or 31 degrees C) reduced high-K+-induced (72.7 mm) muscle contraction and increased [Ca2+]i, but it enhanced carbachol-induced (1 microm) muscle contraction with a decrease in [Ca2+]i. The volatile anesthetics tested showed significant inhibition of both high-K+-induced and carbachol-induced airway smooth muscle contraction, with a concomitant decrease in [Ca2+]i. The inhibition of the carbachol-induced muscle contraction by volatile anesthetics was abolished partially by exposure to low temperature. Volatile anesthetics and low-temperature exposure significantly inhibited voltage-dependent Ca2+ channel activity of the smooth muscle. Conclusions Exposure of airway smooth muscle to low temperature leads to an increase in agonist-induced muscle contractility, with a decrease in [Ca2+]i. The inhibition of voltage-dependent Ca2+ channel activity by exposure to low temperature and by volatile anesthetics cam be attributed, at least in part, to the decrease in [Ca2+]i.


2012 ◽  
Vol 46 (6) ◽  
pp. 823-832 ◽  
Author(s):  
Zhao Yang ◽  
Nariman Balenga ◽  
Philip R. Cooper ◽  
Gautam Damera ◽  
Richard Edwards ◽  
...  

2002 ◽  
Vol 115 (10) ◽  
pp. 2207-2218 ◽  
Author(s):  
John G. McCarron ◽  
John W. Craig ◽  
Karen N. Bradley ◽  
Thomas C. Muir

Many cellular functions are regulated by agonist-induced InsP3-evoked Ca2+ release from the internal store. In non-excitable cells, predominantly, the initial Ca2+release from the store by InsP3 is followed by a more sustained elevation in [Ca2+]i via store-operated Ca2+ channels as a consequence of depletion of the store. Here, in smooth muscle, we report that the initial transient increase in Ca2+, from the internal store, is followed by a sustained response also as a consequence of depletion of the store (by InsP3), but, influx occurs via voltage-dependent Ca2+ channels. Contractions were measured in pieces of whole distal colon and membrane currents and [Ca2+]i in single colonic myocytes. Carbachol evoked phasic and tonic contractions; only the latter were abolished in Ca2+-free solution. The tonic component was blocked by the voltage-dependent Ca2+ channel blocker nimodipine but not by the store-operated channel blocker SKF 96365. InsP3 receptor inhibition, with 2-APB, attenuated both the phasic and tonic components. InsP3 may regulate tonic contractions via sarcolemma Ca2+ entry. In single cells,depolarisation (to ∼-20 mV) elevated [Ca2+]i and activated spontaneous transient outward currents (STOCs). CCh suppressed STOCs, as did caffeine and InsP3. InsP3 receptor blockade by 2-APB or heparin prevented CCh suppression of STOCs; protein kinase inhibition by H-7 or PKC19-36did not. InsP3 suppressed STOCs by depleting a Ca2+ store accessed separately by the ryanodine receptor (RyR). Thus depletion of the store by RyR activators abolished the InsP3-evoked Ca2+ transient. RyR inhibition (by tetracaine) reduced only STOCs but not the InsP3transient. InsP3 contributes to both phasic and tonic contractions. In the former, muscarinic receptor-evoked InsP3 releases Ca2+ from an internal store accessed by both InsP3 and RyR. Depletion of this store by InsP3 alone suppresses STOCs, depolarises the sarcolemma and permits entry of Ca2+ to generate the tonic component. Therefore, by lowering the internal store Ca2+ content,InsP3 may generate a sustained smooth muscle contraction. These results provide a mechanism to account for phasic and tonic smooth muscle contraction following receptor activation.


Sign in / Sign up

Export Citation Format

Share Document