A model for the particle mass yield in the aerosol synthesis of ultrafine monometallic nanoparticles by spark ablation

2018 ◽  
Vol 126 ◽  
pp. 133-142 ◽  
Author(s):  
Maximilian Domaschke ◽  
Melanie Schmidt ◽  
Wolfgang Peukert
2011 ◽  
Vol 11 (11) ◽  
pp. 30527-30562
Author(s):  
Q. Chen ◽  
Y. J. Li ◽  
K. A. McKinney ◽  
M. Kuwata ◽  
S. T. Martin

Abstract. The influence of second-generation products on the particle mass yield of β-caryophyllene ozonolysis was systematically tested and quantified. The approach was to vary the relative concentrations of first- and second-generation products by controlling ozone concentration, while observing the change in particle mass yield. For all organic particle mass concentrations Morg of this study (0.5 < Morg < 230 μg m−3), the data show that particle-phase organic material was in large part composed of second-generation products. For 0.5 < Morg <10 μg m−3, a range which overlaps with atmospheric concentrations, the particle mass yield was not sensitive to ozone exposure, implying that the constituent molecules were rapidly produced at all investigated ozone exposures. In contrast, for Morg > 10 μg m−3 the particle mass yield increased with ozone exposure. These different dependencies on ozone exposure with M org are explained by a combination of the ozonolysis lifetimes of the first-generation products and the volatility distribution of the resulting second-generation products. First-generation products that have short lifetimes produce low-volatility second-generation products whereas first-generation products that have long lifetimes produce high-volatility second-generation products. The ultimate particle mass yield was defined by mass-based stoichiometric yields α0 = 0.17 ± 0.05, α1 = 0.11 ± 0.17, and α2 = 1.03 ± 0.30 for corresponding saturation concentrations of 1, 10, and 100 μg m−3. Terms α0 and α1 had low sensitivity to the investigated range of ozone exposure whereas term α2 increased from 0.32 ± 0.13 to 1.03 ± 0.30 as the ozone exposure was increased. These findings potentially allow for simplified yet nevertheless accurate parameterizations in air quality and climate models that seek to represent the ozonolysis particle mass yield of certain classes of biogenic compounds.


2008 ◽  
Vol 8 (7) ◽  
pp. 2073-2088 ◽  
Author(s):  
J. E. Shilling ◽  
Q. Chen ◽  
S. M. King ◽  
T. Rosenoern ◽  
J. H. Kroll ◽  
...  

Abstract. The yield of particle mass in secondary organic aerosol (SOA) formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25°C, 40% RH, dry (NH4)SO4 seed particles, and excess 1-butanol. The organic particle loading was independently measured by an aerosol mass spectrometer and a scanning mobility particle sizer, and the two measurements agreed well. The observations showed that SOA formation occurred for even the lowest reacted α-pinene concentration of 0.3 ppbv. The particle mass yield was 0.09 at 0.15 μg m−3, increasing to 0.27 at 40 μg m−3. Compared to some results reported in the literature, the yields were 80 to 100% larger for loadings above 2 μg m−3. At lower loadings, the yields had an offset of approximately +0.07 from those reported in the literature. To as low as 0.15 μm−3, the yield curve had no inflection point toward null yield, implying the formation of one or several products having vapor pressures below this value. These observations of increased yields, especially for low loadings, are potentially important for accurate prediction by chemical transport models of organic particle concentrations in the ambient atmosphere.


2007 ◽  
Vol 7 (6) ◽  
pp. 17927-17965 ◽  
Author(s):  
J. E. Shilling ◽  
Q. Chen ◽  
S. M. King ◽  
T. Rosenoern ◽  
J. H. Kroll ◽  
...  

Abstract. The yield of particle mass in secondary organic aerosol (SOA) formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25°C, 40% RH, dry (NH)4SO4 seed particles, and excess 1-butanol. The organic particle loading was independently measured by an aerosol mass spectrometer and a scanning mobility particle sizer, and the two measurements agreed well. The observations showed that SOA formation occurred for even the lowest reacted α-pinene concentration of 0.3 ppbv. The particle mass yield was 0.09 at 0.15 μg m−3, increasing to 0.27 at 40 μg m−3. Compared to results reported in the literature, the yields were 80 to 100% larger for loadings above 2 μg m−3. At lower loadings, the yields had an offset of approximately +0.07 from those reported in the literature. To as low as 0.15 μg m−3, the yield curve had no inflection point toward null yield, implying the formation of one or several products having vapor pressures below this value. These observations of increased yields, especially for low loadings, are potentially important for accurate prediction by chemical transport models of organic particle concentrations in the ambient atmosphere.


2012 ◽  
Vol 12 (7) ◽  
pp. 3165-3179 ◽  
Author(s):  
Q. Chen ◽  
Y. L. Li ◽  
K. A. McKinney ◽  
M. Kuwata ◽  
S. T. Martin

Abstract. The influence of second-generation products on the particle mass yield of β-caryophyllene ozonolysis was systematically tested and quantified. The approach was to vary the relative concentrations of first- and second-generation products by adjusting the concentration of ozone while observing changes in particle mass yield. For all wall-loss corrected organic particle mass concentrations Morg of this study (0.5 < Morg < 230 μg m−3), the data show that the particle-phase organic material was composed for the most part of second-generation products. For 0.5< Morg < 10 μg m−3, a range which overlaps with atmospheric concentrations, the particle mass yield was 10 to 20% and was not sensitive to ozone exposure, implying that the constituent molecules were rapidly produced at all investigated ozone exposures. In contrast, for Morg > 10 μg m−3 the particle mass yield increased to as high as 70% for the ultimate yield corresponding to the greatest ozone exposures. These differing dependencies on ozone exposure under different regimes of Morg are explained by a combination of the ozonolysis lifetimes of the first-generation products and the volatility distribution of the resulting second-generation products. First-generation products that have short lifetimes produce low-volatility second-generation products whereas first-generation products that have long lifetimes produce high-volatility second-generation products. The ultimate particle mass yield was defined by mass-based stoichiometric yields αi of α0 = 0.17 ± 0.05, α1 = 0.11 ± 0.17, and α2 = 1.03 ± 0.30 for corresponding saturation concentrations of 1, 10, and 100 μg m−3. Terms α0 and α1 had low sensitivity to the investigated range of ozone exposure whereas term α2 increased from 0.32 ± 0.13 to 1.03 ± 0.30 as the ozone exposure was increased. These findings potentially allow for simplified yet accurate parameterizations in air quality and climate models that seek to represent the ozonolysis particle mass yields of certain classes of biogenic compounds.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

1994 ◽  
Vol 4 (5) ◽  
pp. 537-544 ◽  
Author(s):  
M.K. Akhtar ◽  
S. Vemury ◽  
S.E. Pratsinis
Keyword(s):  

2019 ◽  
Vol 2019 (10) ◽  
Author(s):  
Doojin Kim ◽  
Konstantin T. Matchev ◽  
Prasanth Shyamsundar

2018 ◽  
Vol 4 ◽  
pp. 26 ◽  
Author(s):  
Brieuc Voirin ◽  
Grégoire Kessedjian ◽  
Abdelaziz Chebboubi ◽  
Sylvain Julien-Laferrière ◽  
Olivier Serot

Studies on fission yields have a major impact on the characterization and the understanding of the fission process and are mandatory for reactor applications. Fission yield evaluation represents the synthesis of experimental and theoretical knowledge to perform the best estimation of mass, isotopic and isomeric yields. Today, the output of fission yield evaluation is available as a function of isotopic yields. Without the explicitness of evaluation covariance data, mass yield uncertainties are greater than those of isotopic yields. This is in contradiction with experimental knowledge where the abundance of mass yield measurements is dominant. These last years, different covariance matrices have been suggested but the experimental part of those are neglected. The collaboration between the LPSC Grenoble and the CEA Cadarache starts a new program in the field of the evaluation of fission products in addition to the current experimental program at Institut Laue-Langevin. The goal is to define a new methodology of evaluation based on statistical tests to define the different experimental sets in agreement, giving different solutions for different analysis choices. This study deals with the thermal neutron induced fission of 235U. The mix of data is non-unique and this topic will be discussed using the Shannon entropy criterion in the framework of the statistical methodology proposed.


2021 ◽  
pp. 118303
Author(s):  
Ta-Yuan Chang ◽  
Ching-Chih Tsai ◽  
Chang-Fu Wu ◽  
Li-Te Chang ◽  
Kai-Jen Chuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document