Lithogenic concentrations of trace metals in soils and saprolites over crystalline basement rocks: A case study from SW Nigeria

2006 ◽  
Vol 46 (5) ◽  
pp. 427-438 ◽  
Author(s):  
Moshood N. Tijani ◽  
Olugbenga A. Okunlola ◽  
Akinlolu F. Abimbola
2014 ◽  
Vol 197 (2) ◽  
pp. 731-747 ◽  
Author(s):  
Jacek Majorowicz ◽  
Judith Chan ◽  
James Crowell ◽  
Will Gosnold ◽  
Larry M. Heaman ◽  
...  

2020 ◽  
Author(s):  
Daniel Muñoz-López ◽  
Gemma Alías ◽  
David Cruset ◽  
Irene Cantarero ◽  
Cédric M. Jonh ◽  
...  

Abstract. Calcite veins precipitated in the Estamariu thrust during two tectonic events decipher the temporal and spatial relationships between deformation and fluid migration in a long-lived thrust and determine the influence of basement rocks on the fluid chemistry during deformation. Structural and petrological observations constrain the timing of fluid migration and vein formation, whilst geochemical analyses (δ13C, δ18O, 87Sr/86Sr, clumped isotope thermometry and elemental composition) of the related calcite cements and host rocks indicate the fluid origin, pathways and extent of fluid-rock interaction. The first tectonic event, recorded by calcite cements Cc1a and Cc2, is related to the Alpine reactivation of the Estamariu thrust, and is characterized by the migration of meteoric fluids, heated at depth (temperatures between 56 and 98 °C) and interacted with crystalline basement rocks before upflowing through the thrust zone. During the Neogene extension, the Estamariu thrust was reactivated and normal faults and shear fractures with calcite cements Cc3, Cc4 and Cc5 developed. Cc3 and Cc4 precipitated from hydrothermal fluids (temperatures between 127 and 208 °C and between 102 and 167 °C, respectively) derived from crystalline basement rocks and expelled through fault zones during deformation. Cc5 precipitated from low temperature meteoric waters percolating from the surface through small shear fractures. The comparison between our results and already published data in other structures from the Pyrenees suggests that regardless of the origin of the fluids and the tectonic context, basement rocks have a significant influence on the fluid chemistry, particularly on the 87Sr/86Sr ratio. Accordingly, the cements precipitated from fluids interacted with crystalline basement rocks have significantly higher 87Sr/86Sr ratios (> 0.710) with respect to those precipitated from fluids that have interacted with the sedimentary cover (


2004 ◽  
Vol 31 (9) ◽  
pp. 941 ◽  
Author(s):  
Rob Reid ◽  
Juhong Liu

The analysis of transport systems involved in the uptake of trace metals in plants is complicated by technical difficulties associated with measurement of uptake and by the likely presence of multiple transporters with broad specificity. In this study, influx of Co was used to illustrate the problems involved and potential solutions. Issues surrounding kinetic descriptions of transport, multiple uptake systems, specificity of transporters, pH effects and the role of membrane surface charge in determining fluxes are addressed. A list of criteria for validation of flux measurements is provided.


2018 ◽  
Vol 11 (1) ◽  
pp. 155-164
Author(s):  
M.A. Idris ◽  
M.L. Garba ◽  
S.A. Kasim ◽  
I.M. Madabo ◽  
K.A. Dandago

The paper is review on the role of geological structures on groundwater occurrence and flow in Crystalline Basement aquifers. The aim was to study the existing available literatures in order to evaluate structural/lineaments (faults, joints/fractures, folds, shear zone etc.) their influences and controls of groundwater occurrence and flow of bedrock of crystalline rocks of igneous and/or metamorphic origin. Groundwater in the basement aquifers resides/occurs within the weathered overburden and fractured bedrocks which originate from rainfall through the process of hydrological cycle. Remote sensing technique uses satellite imagery or aerial photograph to identify linear features on the ground and attempts to relate these lines to geologic structures capable of transmitting and storing large quantities of groundwater. Faults, joints/fractures and folds act as conduit and make rocks excellent aquifers. These features also, served as channels for groundwater movement which may results to an increased in secondary porosity, permeability and therefore, can results as a groundwater prospective/promising zones in crystalline basement rocks. Keywords: Basement Terrain, Groundwater, Lineament, Movement, Occurrence


Sign in / Sign up

Export Citation Format

Share Document