Nature, origin and significance of the Fomopéa Pan-African high-K calc-alkaline plutonic complex in the Central African fold belt (Cameroon)

2010 ◽  
Vol 57 (1-2) ◽  
pp. 79-95 ◽  
Author(s):  
Maurice Kwékam ◽  
Jean-Paul Liégeois ◽  
Emmanuel Njonfang ◽  
Pascal Affaton ◽  
Gerald Hartmann ◽  
...  
2004 ◽  
Vol 40 (3-4) ◽  
pp. 115-136 ◽  
Author(s):  
M. Eyal ◽  
B.A. Litvinovsky ◽  
Y. Katzir ◽  
A.N. Zanvilevich
Keyword(s):  

2016 ◽  
Vol 46 (2) ◽  
pp. 221-237 ◽  
Author(s):  
Marcela Paschoal Perpétuo ◽  
Wagner da Silva Amaral ◽  
Felipe Grandjean da Costa ◽  
Evilarde Carvalho Uchôa Filho ◽  
Daniel Francisco Martins de Sousa

ABSTRACT: The Serra da Aldeia Suite is composed by circular or oval-shaped plutons, intrusive in meta-sedimentary and meta-volcanosedimentary rocks in the Riacho do Pontal Fold Belt, NE Brazil. The Serra das Melancias Pluton, belonging to Serra da Aldeia Suite, is located southeastern of Piaui state, near Paulistana city. These plutons represent a major magmatic expression in this area and contain important information about the late magmatic/collisional geologic evolution of the Brasiliano Orogeny. Based on petrographic and geochemical data, three facies were defined in the Serra das Melancias Pluton: granites, syenites and quartz monzonites. The rocks display high-K and alkaline to shoshonitic affinities, are metaluminous and show ferrous character. They are enriched in Light Rare Earth Elements and Large Ion Lithophile Elements, with negative anomalies in Nb, Ta and Ti. Their high Ba, Sr, K/Rb, low Rb, relatively low U, Th, Nb to very low Heavy Rare Earth Elements and Y resemble those of typical high Ba-Sr granitoids. The geochemical data suggest the emplacement of Serra das Melancias Pluton in a transitional, late to post-orogenic setting in the Riacho do Pontal Fold Belt during the late Brasiliano-Pan African Orogeny.


2021 ◽  
Vol 50 (2) ◽  
pp. 315-326
Author(s):  
Oluwatoyin O. Akinola ◽  
Azman A. Ghani ◽  
Elvaene James

Idanre granite batholith in southwestern Nigeria contain three rock types, namely, Older granite undifferentiated (OGu), Older granite porphyritic (OGp) and Older granite fine-grained (OGf). The granitoids intruded into a basement rock of primarily migmatite gneiss. Petrography indicates that quartz, orthoclase, hornblende, and biotite are common to all members while microcline is more prominent in OGp and plagioclase is poorly represented in OGf. Despite minor differences in petrographic features, the granite units generally have similar geochemical relationships. The average SiO2 contents in OGp (70.49%), OGu (68.7%) and OGf (65.8%) are comparable to similar Pan-African suites located in eastern and northern Nigeria. Na2O+K2O-CaO versus SiO2 diagram shows all the granite members are calcic, K2O vs SiO2 plot classify the granites as high-K calcic alkali to shoshonitic. ANK vs ACNK plot indicatesthey are peraluminous. Plot of A/CNK vs SiO2 and K2O vs Na2O diagrams classified the rock as S-type granite. The granitoids are calc-alkaline with elevated Na2O (>2.6%) and Al/(Na2O+CaO) contents (OGu, 2.1-3.4; OGp, 2.4-3.1 and OGf, 2.2-2.9). The tectonic diagram (Rb vs (Y+Nb) indicatesthatthe batholith is Within Plate Granite (WPG.


2000 ◽  
Vol 30 (1) ◽  
pp. 182-185 ◽  
Author(s):  
ADEJARDO FRANCISCO DA SILVA FILHO ◽  
WILLIAM RANDALL VAN SCHMUS ◽  
IGNEZ DE PINHO GUIMARÃES
Keyword(s):  

2020 ◽  
Vol 8 (2) ◽  
pp. 197
Author(s):  
Kehinde Oluyede ◽  
Urs Klötzli

Syn-collisional granite in the northern part of the Birnin Gwari schist belt consists dominantly of granite and lesser granodiorite and quartzolite. Petrographic and ge¬ochemical data revealed three granite groups: the biotite-hornblende granite (quartzolite - BHG); the biotite granite (BG) and the biotite-muscovite granite (BMG). The rocks generally have calc-alkaline and high-K calc-alkaline affinities, and calc-alkalic to alkali-calcic, peraluminous and ferroan and magnesian geochemistry. They are characterized by LILE enrichment, high LREE fractionation factor [(La/Yb) (6.74 to 45.14] with weak to moderate negative Eu (Eu/Eu* = 0.38 to 0.62) and strong negative Nb, P and Ti anomalies. Variation in the behavior of lithophile elements (Ba, Sr and Rb) revealed diverse granite trend such as “high and low Ba-Sr”; “normal”, “anomalous” “strongly differentiated” and “granodiorite and quartz diorite” granite. Their display of similar trace elements and REE patterns suggest they are cogenetic. Major and trace element data indicate differentiation of a mafic magma and partial melting of crustal components inherited from shale-greywacke and quartzose sedimentary protoliths in volcanic arc and post collisional settings. The field and geochemical characteristics of this granite suggest that they are similar to other granites in schist belts in other parts of Nigeria, forming the lateral continuation of the same Pan-African magmatic belt.   


Sign in / Sign up

Export Citation Format

Share Document